Uppsala Berlin Joint Laboratory “Our willingness to cooperate is our strength”

Great political interest for the new Uppsala Berlin Joint Laboratory (UBjL): On the 4th of November, Sweden’s ambassador in Germany, Dr. Lars Danielsson, came personally to the HZB where the UBjL is established for the inauguration of the joint project.

“Many parts of the world are currently regarded as more dynamic than Europe,” Dr. Danielsson said in his opening speech: “But we have great strengths – namely our skill and our willingness to cooperate.” These strengths, the ambassador continued, can be seen clearly in the UBjL: “Such excellent joint research projects lead to results that will bring great benefits to society, our children and our grandchildren.” Dr. Danielsson then gave the symbolic start signal for two experimental stations that will be supervised by the Swedish-German workgroup belonging to the UBjL.
 
The “Uppsala Berlin Joint Laboratory” is headed by Professor Nils Mårtensson, University of Uppsala, and Professor Alexander Föhlisch, Head of the HZB Institute “Methods and Instrumentation for Synchrotron Radiation Research. “We are very proud that Professor Mårtensson has invested resources from this ERC Advanced Grant in the UBjL,” HZB Scientific Director Prof. Dr. Anke Kaysser-Pyzalla said at the opening. This funding, co-financed by the HZB, has allowed the development of worldwide unique study methods for functional materials.

These methods are based on angle-resolved time-of-flight electron spectroscopy (ARTOF) and MHz pulse extraction at BESSY II. The ARTOF instruments were developed in Sweden by the University of Uppsala and the company Scienta-Omicron in close collaboration with the HZB. “The synchrotron source BESSY II delivers pulses with the most suitable time structure worldwide for optimally using the instruments,” said Svante Professor Svante Svensson, who is part of the UBjL team at BESSY II in Berlin. At the UBjL, the researchers can study the state of functional materials at the lowest possible X-ray dosage. Further methods allow detailed detection of the electronic structure of materials.


You might also be interested in

  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.
  • “Research and development in times of war: not only possible, but crucial!”
    Interview
    18.06.2024
    “Research and development in times of war: not only possible, but crucial!”
    The Ukraine Recovery Conference took place in Berlin on 11 and 12 June. On a side-event representatives from Helmholtz, Fraunhofer and Leibniz discussed how research can contribute to the sustainable reconstruction of Ukraine.
    In this interview, Bernd Rech, scientific director at HZB, talks about the importance of research during the war and projects such as Green Deal Ukraina.

  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.