Öffnet in neuem Fenster Opens in a new window Öffnet externe Seite Opens an external site Öffnet externe Seite in neuem Fenster Opens an external site in a new window

Institute Solar Fuels

Institute

At the Institute for Solar Fuels we develop new materials and devices for the production of chemical fuels from cheap and abundant resources, such as water and CO2, using sunlight. Our current efforts are focused on photo-electrochemical water splitting. Towards this end, we develop deposition processes and synthesis routes for thin film and nanostructured semiconductors and catalysts, and we investigate the fundamental processes of charge generation, separation, and transfer in the bulk and at the interfaces of these materials. Of particular interest is the role of defects, which we aim to control by developing thermal treatments, passivation layers, and doping strategies. Our experimental toolbox includes a range of thin film deposition techniques, electrochemistry and photo-electrochemistry, time-resolved spectroscopy on fs – s time scales, and synchrotron-based methods under operando conditions.

Recent Publications

Spectroscopic analysis with tender X-rays: SpAnTeX, a new AP-HAXPES end-station at BESSY II

We introduce a new facility at BESSY II for in situ spectroscopic analysis with tender X-rays, called SpAnTeX. This setup features a state-of-the-art electron spectrometer that performs efficiently under gas pressures up to 30 mbar and photon energies from 200 eV to 10 keV. It can capture photoelectron spatial distribution with high resolution and conduct time-resolved studies. An example experiment demonstrates its use with the dip-and-pull technique, highlighting its electrochemical capabilities. The end-station supports various interface investigations, including solid/liquid and solid/gas, making it versatile for advanced materials research.

Marco Favaro*, Pip C.J. Clark, Micheal J. Sear, Martin Johansson, Sven Maehl, Roel van de Krol, David E. Starr*; Surf. Sci. 2021, 713, 121903; https://doi.org/10.1016/j.susc.2021.121903