News and science highlights
Selection of news and science highlights from recent years on the topics of technology transfer and innovation.
- Rutger Schlatmann re-elected as ETIP PV ChairThe European Technology and Innovation Platform for Photovoltaics (ETIP PV) was created by the European Commission in order to promote photovoltaic technologies and industries in Europe. Now, the ETIP PV Steering Committee elected a new Chair, as well as two Vice-Chairs for the term 2024 – 2026. Rutger Schlatmann, head of the division Solar Energy at the HZB, and professor at HTW Berlin, was re-elected as the ETIP PV Chair.
- Perovskite solar cells: TEAM PV develops reproducibility and comparabilityTen teams at Helmholtz-Zentrum Berlin are building a long-term international alliance to converge practices and develop reproducibility and comparability in perovskite materials. The TEAM PV project is funded by the Federal Ministry of Education and Research (BMBF), Germany.
- HZB patent for semiconductor characterisation goes into serial productionAn HZB team has developed together with Freiberg Instruments an innovative monochromator that is now being produced and marketed. The device makes it possible to quickly and continuously measure the optoelectronic properties of semiconductor materials with high precision over a broad spectral range from the near infrared to the deep ultraviolet. Stray light is efficiently suppressed. This innovation is of interest for the development of new materials and can also be used to better control industrial processes.
- Photovoltaic living lab reaches the 100 Megawatt-hour markAbout three years ago, the living laboratory at HZB went into operation. Since then, the photovoltaic facade has been generating electricity from sunlight. On September 27, 2024, it reached the milestone of 100 megawatt-hours.
- SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beerThe first sign of spoilage in many food products is the formation of free radicals, which reduces the shelf-life and the overall quality of the food. Until now, the detection of these molecules has been very costly for the food companies. Researchers at HZB and the University of Stuttgart have developed a portable, small and inexpensive 'EPR on a chip' sensor that can detect free radicals even at very low concentrations. They are now working to set up a spin-off company, supported by the EXIST research transfer programme of the German Federal Ministry of Economics and Climate Protection. The EPRoC sensor will initially be used in the production of olive oil and beer to ensure the quality of these products.
- Review on ocular particle therapy (OPT) by international expertsA team of leading experts in medical physics, physics and radiotherapy, including HZB physicist Prof. Andrea Denker and Charité medical physicist Dr Jens Heufelder, has published a review article on ocular particle therapy. The article appeared in the Red Journal, one of the most prestigious journals in the field. It outlines the special features of this form of eye therapy, explains the state of the art and current research priorities, provides recommendations for the delivery of radiotherapy and gives an outlook on future developments.
- Green hydrogen from direct seawater electrolysis- experts warn against hypeAt first glance, the plan sounds compelling: invent and develop future electrolysers capable of producing hydrogen directly from unpurified seawater. But a closer look reveals that such direct seawater electrolysers would require years of high-end research. And what is more: DSE electrolyzers are not even necessary - a simple desalination process is sufficient to prepare seawater for conventional electrolyzers. In a commentary in Joule, international experts compare the costs and benefits of the different approaches and come to a clear recommendation.
- Chilean President visits Helmholtz-Zentrum BerlinThe President of Chile, Gabriel Boric Font, visited HZB on 11 June with a delegation of 50 people. Among the highlights of the evening were the signing of a Memorandum of Understanding between the Chilean Corporation for the Promotion of Production (CORFO) and HZB and a visit to BESSY II light source.
- Freeze casting - a guide to creating hierarchically structured materialsFreeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.
- A simpler way to inorganic perovskite solar cellsInorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
- BESSY II: How pulsed charging enhances the service time of batteriesAn improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.
- 14 parameters in one go: New instrument for optoelectronicsAn HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
- Focused ion beam technology: a single tool for a wide range of applicationsProcessing materials on the nanoscale, producing prototypes for microelectronics or analysing biological samples: The range of applications for finely focused ion beams is huge. Experts from the EU collaboration FIT4NANO have now reviewed the many options and developed a roadmap for the future. The article, published in “Applied Physics Review”, is aimed at students, users from industry and science as well as research policy makers.
- HZB-Highlights 2022 publishedThe Highlights 2022 report on a selection of the most important research results and events at HZB.
- Boosting PET recycling with higher standards for laboratory experimentsMany enzymes promise to break down plastic. But what works well in the lab often fails on a large scale. Now a new study by Gert Weber, HZB, Uwe Bornscheuer, University of Greifswald, and Alain Marty, Chief Scientific Officer of Carbios, shows how raising the bar for laboratory experiments could help identify promising approaches more quickly. The team demonstrated the new standards on four newly discovered enzymes.
- Green Deal Ukraina: Energy and Climate Agenda for Ukraine’s way towards EUThe first high-level event of the Green Deal Ukraina (GDU) project took place in October in Kyiv, Ukraine, attended by more than 150 participants. This first gathering and formal launch took place at an important moment: EU will share a new report on the countries progress towards EU and Ukraine will respond by sharing its own analysis, called pre-screening.
- Green hydrogen could reach economic viability by co-production of valuable chemicalsIt already works: there are several approaches to using solar energy to split water and produce hydrogen. Unfortunately, this green hydrogen has so far been more expensive than grey hydrogen from natural gas. A study by Helmholtz-Zentrum Berlin (HZB) and Technische Universität Berlin now shows how green hydrogen from sunlight can become profitable.
- Technology Transfer Prize: Tandem solar cells step closer to industrial pilot productionTandem solar cells achieve high efficiencies: by combining two different types of solar cells, more sunlight is converted into electricity. PV manufacturer Qcells and a HZB team led by Dr. Kári Sveinbjörnsson and Bor Li have developed the technology to an extent, that Qcells invested in setting up a pilot line for the development of tandem cells in Saxony-Anhalt. For this successful transfer into industrial application, both researchers received the Technology Transfer Prize of the Helmholtz-Zentrum Berlin worth 5,000 euros, on 4. October 2023.
- Record-breaking tandem solar cell now with precise scientific explanationsThe world's best tandem solar cells, consisting of a silicon bottom cell and a perovskite top cell, can today convert around one-third of incident solar radiation into electrical energy. These are record values, especially for a potentially very low-cost technology. A team at HZB is now providing the scientific data for the first time and describing how this development was achieved in the renowned journal Science.
- Green Deal Ukraina: HZB launches an Energy & Climate ProjectGreen Deal Ukraina, funded by the German Federal Ministry of Education and Research, is working with partner institutions in Ukraine and Poland to establish an energy and climate think tank in the capital, Kiev. The aim is to provide independent and evidence-based advice on rebuilding a sustainable energy system in Ukraine. After all, the implementation of energy and climate legislation is a prerequisite for Ukraine's accession to the EU. The project started on 1 June 2023 and will run for four years.
- Girls on Tour at the Long Night of Science: Be there!Are you a 10th to 13th grade student interested in mathematics and science? Then secure your free VIP ticket for a tour with exciting experiments and insights during the Long Night of Science! Meet female scientists who are passionate about making our world a better place! 17.06. , from 5.30 pm, Adlershof Research Campus.
- Alexander von Humboldt Foundation Grant for Dr. Jie WeiIn April, Dr. Jie Wei started his research work in the Helmholtz Young Investigator Group Nanoscale Operando CO2 Photo-Electrocatalysis at Helmholtz-Zentrum Berlin (HZB) and Fritz Haber Institute (FHI) of the Max Planck Society. Wei received one of the highly competitive Humboldt postdoctoral research fellowships and will pursue his two-year project under the guidance of the academic hosts Dr. Christopher Kley and Prof. Dr. Beatriz Roldan Cuenya.
- Bauwerkintegrierte Photovoltaik: HZB bei den Berliner Energietagen am 23.05.In diesem Jahr fokussiert die Veranstaltung des Helmholtz-Zentrum Berlin für Materialien und Energie die Bauwerkintegrierte Photovoltaik (BIPV). Dabei betrachten wir das Material, die Technologie, den Baustoff sowie Entwurfsparameter und den Bauablauf. Begleitet wird die Veranstaltung von Materialproben und Vorträgen.
- Visit from the Czech Republic regarding ApprenticeshipEnd of March, a delegation from the Czech Republic visited HZB at the Wannsee campus. The programme included a visit to the apprentices’ workshop and exchanges regarding opportunities for apprenticeships and upskilling at HZB.
- “We are currently in a decisive phase for photovoltaics”The HZB researcher Rutger Schlatmann has been elected as the new Chair of the platform ETIP-PV, which brings together representatives of science, industry and politics from all over Europe. We interviewed him about the current boom – and about why the photovoltaics ship has not yet sailed for the EU.
- Fast and flexible solar energy from the printerLighter, more flexible and adaptable – the innovation platform Solar TAP develops innovative solutions for photovoltaic applications. The aim is to make surfaces already used in agriculture, the building sector and transport additionally usable for the expansion of solar energy with printed solar cells.
- HZB receives funding to make innovations usable more quicklyThe Helmholtz Association has selected three new innovation platforms that will now be funded. HZB is involved in two of them: The Innovation Platform on Accelerator Technologies HI-ACTS is intended to open up modern accelerators for a wide range of applications, while the Innovation Platform Solar TAP is intended to bring new ideas from the laboratories of photovoltaics research more quickly into an application. In total, HZB will receive 4.2 million euros in grants from the Pact for Research and Innovation over the next three years.
- Perovskite solar cells from the slot die coater - a step towards industrial productionSolar cells made from metal halide perovskites achieve high efficiencies and their production from liquid inks requires only a small amount of energy. A team led by Prof. Dr. Eva Unger at Helmholtz-Zentrum Berlin is investigating the production process. At the X-ray source BESSY II, the group has analyzed the optimal composition of precursor inks for the production of high-quality FAPbI3 perovskite thin films by slot-die coating. The solar cells produced with these inks were tested under real life conditions in the field for a year and scaled up to mini-module size.
- Electrocatalysis under the atomic force microscopeA further development in atomic force microscopy now makes it possible to simultaneously image the height profile of nanometre-fine structures as well as the electric current and the frictional force at solid-liquid interfaces. A team from the Helmholtz-Zentrum Berlin (HZB) and the Fritz Haber Institute (FHI) of the Max Planck Society has succeeded in analysing electrocatalytically active materials and gaining insights that will help optimise catalysts. The method is also potentially suitable for studying processes on battery electrodes, in photocatalysis or on active biomaterials.
- Maria Skłodowska Curie Postdoctoral Fellowship for Artem MusiienkoDr. Artem Musiienko has earned a prestigious Maria Skłodowska Curie Postdoctoral Fellowship for his research project HyPerGreen. In the group of Prof. Antonio Abate, HZB, Musiienko will explore and improve lead-free perovskite solar cells with the goal to increase their efficiency to more than 20 %.
- Stability of perovskite solar cells reaches next milestonePerovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. This has now been shown in a study published in the journal Science by an international team led by Antonio Abate, HZB. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
- New software based on Artificial Intelligence helps to interpret complex dataExperimental data is often not only highly dimensional, but also noisy and full of artefacts. This makes it difficult to interpret the data. Now a team at HZB has designed software that uses self-learning neural networks to compress the data in a smart way and reconstruct a low-noise version in the next step. This enables to recognise correlations that would otherwise not be discernible. The software has now been successfully used in photon diagnostics at the FLASH free electron laser at DESY. But it is suitable for very different applications in science.
- World record back at HZB: Tandem solar cell achieves 32.5 percent efficiencyThe current world record of tandem solar cells consisting of a silicon bottom cell and a perovskite top cell is once again at HZB. The new tandem solar cell converts 32.5 % of the incident solar radiation into electrical energy. The certifying institute European Solar Test Installation (ESTI) in Italy measured the tandem cell and officially confirmed this value which is also included in the NREL chart of solar cell technologies, maintained by the National Renewable Energy Lab, USA.
- On the way to mass production: perovskite silicon tandem cellsIn order to transfer tandem solar cells from laboratory scale to production, HZB is cooperating with the solar module manufacturer Meyer Burger, which has great expertise in heterojunction technology (HJT) for silicon modules. Within the framework of this cooperation, mass production-ready silicon bottom cells based on heterojunction technology are to be combined with a top cell based on perovskite technology.
- European pilot line for innovative photovoltaic technology based on tandem solar cellsPEPPERONI, a four-year Research and Innovation project co-funded under Horizon Europe and jointly coordinated by Helmholtz-Zentrum Berlin and Qcells, will support Europe in reaching its renewable energy target of climate neutrality by 2050. The project will help advance perovskite/silicon tandem photovoltaics (PV) technology’s journey towards market introduction and mass manufacturing.
- Photocatalysis: Processes in charge separation recorded experimentallyCertain metal oxides are considered good candidates for photocatalysts to produce green hydrogen with sunlight. A Chinese team has now published exciting results on copper(I) oxide particles in Nature, to which a method developed at HZB contributed significantly. Transient surface photovoltage spectroscopy showed that positive charge carriers on surfaces are trapped by defects in the course of microseconds. The results provide clues to increase the efficiency of photocatalysts.
- A perfect match: perovskite meets perovskiteTandem solar cells, which combine two different perovskite semiconductors, promise high efficiencies and can be produced with very little energy input. Such modules could even be bendable. Together with partners from industry and research, HZB expert Prof. Steve Albrecht is working to realise this vision. His team recently succeeded in producing an all-perovskite tandem solar cell with a certified efficiency of 27.2 %. A conversation about the opportunities and challenges of the perovskite-perovskite technology.
- Tandem solar cells with perovskite: nanostructures help in many waysBy the end of 2021, teams at HZB had presented perovskite silicon tandem solar cells with an efficiency close to 30 percent. This value was a world record for eight months, a long time for this hotly contested field of research. In the renowned journal Nature Nanotechnology, the scientists describe how they achieved this record value with nanooptical structuring and reflective coatings.
- “The market itself will push this issue” - Interview on the role of synthetic kerosene for aviationIn the research consortium CARE-O-SENE, scientists are looking for more efficient ways to produce synthetic kerosene for use in aviation. We interviewed Tobias Sontheimer of HZB and Dirk Schär of the participating company Sasol about what has to be done, what obstacles there are, and how aviation can be decarbonised.
- 40-million-euro sustainable kerosene research project CARE-O-SENE receives fundingThe international research project CARE-O-SENE (Catalyst Research for Sustainable Kerosene) was granted 30 million euros in funding by the German Federal Ministry of Education and Research (BMBF). Additionally, the industrial consortium partners contribute 10 million euros. The aim of the project is to develop novel, next-generation Fischer-Tropsch catalysts and thus to optimise the production of sustainable kerosene – or Sustainable Aviation Fuel (SAF) – on an industrial scale. Helmholtz-Zentrum Berlin (HZB) is part of this collaboration.
- Prof. Rutger Schlatmann is Chair of the European Platform for PhotovoltaicsRutger Schlatmann is a solar expert from the Helmholtz-Zentrum Berlin (HZB) and professor at the Berlin University of Applied Sciences. At the HZB he heads the Competence Centre for Photovoltaics, which successfully brings together solar research and industry. Now the expert has been elected as chairman of the European Technology and Innovation Platform for Photovoltaics (ETIP PV). It provides independent advice on energy policy issues and the expansion of photovoltaics in Europe.
- For strong non-university research in BerlinThe non-university research institutions in Berlin will work even more closely together in the future. Their association Berlin Research 50 (BR50), founded in 2020, has joined forces to form a registered non-profit association on 4. October 2022. Together, the research institutions want to further develop and strengthen Berlin as a science location.
- Podcast | Der Klimawandel und die Stadt: Mehr Grün oder mehr Photovoltaik?Wie umgehen mit begrenztem Platz? Städte und Kommunen müssen sich jetzt auf die Folgen des Klimawandels vorbereiten. Gründächer, begrünte Fassaden und großflächige Entsiegelungen könnten zu einem besseren Mikroklima beitragen. Aber wird der Platz nicht auch für Photovoltaik benötigt?
In einem kontroversen Gespräch loten die Experten Björn Rau (HZB, BAIP) und Jens Hasse (Deutsches Institut für Urbanistik) die Optionen aus und finden neue Lösungen. - Green hydrogen: Nanostructured nickel silicide shines as a catalystElectrical energy from wind or sun can be stored as chemical energy in hydrogen, an excellent fuel and energy carrier. The prerequisite for this, however, is efficient electrolysis of water with inexpensive catalysts. For the oxygen evolution reaction at the anode, nanostructured nickel silicide now promises a significant increase in efficiency. This was demonstrated by a group from the HZB, Technical University of Berlin and the Freie Universität Berlin as part of the CatLab research platform with measurements among others at BESSY II.
- Young investigator research group on electrocatalysis at HZBDr. Michelle Browne establishes her own young investigator group at the HZB . Starting in August, the group is co-funded by the Helmholtz Association for the next five years. The electrochemist from Ireland concentrates on electrolytically active novel material systems and wants to develop next-generation electrocatalysts, for example hydrogen production. At HZB she will find the perfect environment to conduct her research.
- Environmental impact of perovskite-on-silicon solar PV modules lower than silicon aloneSolar photovoltaics is a reliable and sustainable way to generate energy. A study has evaluated for the first time the lifecycle environmental impact of industrially produced perovskite-on-silicon tandem solar modules, provided by Oxford PV. The conclusion: these innovative tandem solar modules are even more environmentally friendly than conventional silicon heterojunction modules over their lifetimes. The study has now been published by the peer reviewed journal Sustainable Energy & Fuels.
- Deputy Prime Minister of Singapore visits HZBOn Friday, 17 June, a delegation from Singapore visited HZB. Heng Swee Keat, Deputy Prime Minister of Singapore, was accompanied by the Ambassador to Singapore in Germany, Laurence Bay, as well as representatives from research and industry.
- International consortium to advance decarbonisation of the aviation sectorJOHANNESBURG, SOUTH AFRICA – 24 May 2022: CARE-O-SENE research project will develop advanced catalysts for sustainable aviation fuels
The company Sasol and Helmholtz-Zentrum Berlin (HZB) will lead a consortium to develop and optimise next-generation catalysts that will play a key role in decarbonising the aviation sector through sustainable aviation fuels (SAF).
- A high-ranking Brazilian delegation visited HZBOn 16 May 2022, HZB received a delegation from the Brazilian Ministry of Science, Technology and Innovation (MCTI). Vice-Minister of Science Sergio Freitas de Almeida was visibly impressed by the many research activities being done at HZB to drive the transition to a climate-neutral energy supply in society forward.
- Royal visit from Sweden at HZBKing Carl XVI Gustaf of Sweden as well as a group of business leaders from large corporations such as Ericsson, Nordholt, Vattenfall, ABB, Schneider Electric and Swedish representatives from the public sector and academia visited the Adlershof Technology Park on 11 May 2022.
- PhD Amran Al-Ashouri: Doubling down for the energy transitionClimate change has Amran Al-Ashouri concerned. As a physicist, he knows how urgently and quickly measures need to be taken to limit the global temperature increase to between 1.5 and 2 degrees Celsius. In his private life, the 29-year-old scientist is accordingly a member of the association “climactivity”, which aims to educate as many people as possible about important matters in climate protection.
- Knowledge transfer: BAIP consulting office becomes permanent at HZBThe BAIP consulting office for building-integrated photovoltaics has been launched as a knowledge transfer project in 2019, funded by the Helmholtz Association's Initiative and Networking Fund. In order to build a bridge between the world of construction and photovoltaics, the consulting office provides comprehensive knowledge for architects, planners, builder-owners, investors and urban developers. After an excellent evaluation, the BAIP consulting office will be permanently financed by HZB.
- From Lab to Fab: World Record Solar Cell Goes from Lab to IndustryQ CELLS and Helmholtz-Zentrum Berlin achieve a new world record efficiency for a 2-terminal tandem solar cell combining a mass-production ready silicon bottom cell based on Q.ANTUM technology and a top-cell based on perovskite technology. The efficiency is 28.7%.
- “Workhorse” of silicon photovoltaics combined with perovskite in tandem for the first timeSo-called PERC cells are used in mass production of silicon solar cells, they are considered the workhorses of photovoltaics, dominating the market. Now two teams from HZB and the Institute for Solar Energy Research in Hamelin (ISFH) have shown that such standard silicon cells are also suitable as a basis for tandem cells with perovskite top cells. Currently, the efficiency of the tandem cell is still below that of optimised PERC cells alone, but could be increased to up to 29.5% through targeted optimisation. The research was funded by the German Federal Ministry of Economics as part of a joint project.
- Lithium-Sulfur batteries: First multimodal analysis in pouch cell formatLithium-sulphur (Li/S) batteries have significantly higher energy densities than conventional lithium-ion batteries, but age very quickly. Now, for the first time, a team at HZB has investigated Li/S batteries in the industry-relevant pouch cell format with different electrolytes during operation. Teams from TU Dresden and the Fraunhofer IWS were also involved in the study. With a specially developed measuring cell, impedance, temperature and pressure can be recorded at different times and combined with radiographic images. The evaluation shows how the electrolyte affects the formation of unwanted sulphur particles and polysulphides. The study has been published in the renowned journal Advanced Energy Materials.
- Dissertation Prize Adlershof 2021 goes to Amran Al-Ashouri
On February 17, 2022, the Adlershof Dissertation Prize was awarded for the 20th time. Dr. Amran Al-Ashouri (3rd from right) from the HZB young investigator research group "Perovskite tandem solar cells" received the prize endowed with 3,000 euros. The physicist is researching how new organic contact layers can be used to optimize highly efficient perovskite silicon tandem solar cells.
- Innovative catalysts: An expert reviewHighly efficient (electro-)catalysts are essential for the production of green hydrogen, the chemical industry, fertiliser production and other sectors of the economy. In addition to transition metals, a variety of other metallic or non-metallic elements have now moved into the focus of research. In a review article, experts from CatLab and Technische Universität Berlin present an overview on current knowledge and a perspective on future research questions.
- Humboldt-Universität zu Berlin appoints Eva Unger to professorshipEva Unger was now appointed as W2 professor at Humboldt-Universität zu Berlin. Prof. Dr. Eva Unger leads a research group at HZB. She develops scalable technologies for the production of perovskite semiconductors for low-cost and highly efficient solar cells.
- A sundial of a different kindTurning a scientific question into a product is the requirement that the winners of the HZB Technology Transfer Prize should fulfil. The team led by Tobias Henschel, Bernd Stannowski and Sebastian Neubert won more than just a prize.
- An electronic rainbow – perovskite spectrometer by inkjet printingResearchers from Innovation Lab HySPRINT at Helmholtz-Zentrum Berlin (HZB) and Humboldt Universität zu Berlin (HU) have used an advanced inkjet printing technique to produce a large range of photodetector devices based on a hybrid perovskite semiconductor. By mixing of only three inks, the researchers were able to precisely tune the semiconductor properties during the printing process. Inkjet printing is already an established fabrication method in industry, allowing fast and cheap solution processing. Extending the inkjet capabilities from large area coating towards combinatorial material synthesis opens the door for new possibilities for the fabrication of different kind of electronic components in a single printing step.
- A Wiki for Perovskite Solar Cell ResearchAn international team of experts has collected data on metal halide perovskite solar cells from more than 15,000 publications and developed a database with visualisation options and analysis tools. The database is open source and provides an overview of the rapidly growing knowledge as well as the open questions in this exciting class of materials. The study was initiated by HZB scientist Dr. Eva Unger and implemented and coordinated by her postdoc Jesper Jacobsson.
- World record again at HZB: Almost 30 % efficiency for next-generation tandem solar cellsThree HZB teams led by Prof. Christiane Becker, Prof. Bernd Stannowski and Prof. Steve Albrecht have jointly managed to increase the efficiency of perovskite silicon tandem solar cells fabricated completely at HZB to a new record value of 29.80 %. The value has now been officially certified and is documented in the NREL-charts. This brings the 30 percent mark within reach.
- Germany on the road to net zero: a new Web Atlas shows the optionsWhich technical and nature-based options as well as political decisions can support Germany in being CO2-neutral? These questions are answered by the new web atlas of the Climate Service Center Germany (GERICS) at the Helmholtz-Zentrum Hereon. The new tool is aimed at politicians, experts and the public. The HZB has also contributed to the web atlas.
- Professorship for Antonio Abate at Bielefeld UniversityDr. Antonio Abate investigates perovskite semiconductors for low-cost and highly efficient solar cells and heads a large research group at the Helmholtz Centre Berlin. Now he has accepted a W2 professorship in the Department of Chemistry at Bielefeld University.
- Friedrich-Alexander Universität Erlangen-Nürnberg appoints Olga KasianDr. Olga Kasian is investigating why catalysts for hydrogen production by water electrolysis are limited in efficiency. The chemist has now accepted a professorship at the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). The W2 professorship is entitled "Materials for Electrochemical Energy Conversion" and is located at the Faculty of Engineering.
- Perovskite solar cells: Defects trap charge carriers - and release them againAn international team at HZB and Charles University Prague has investigated how charge carriers in so called MAPI-perovskite semiconductors interact with different defects. They show that a large proportion of defects quickly releases trapped charge carriers. These results could help to further improve the properties of perovskite solar cells.
- Solar energy for a sport watch: HZB Technology Transfer Prize 2021 awardedAt first glance, it looks like an ordinary wristwatch. But its glass taps the energy of the sun. A research group at Helmholtz-Zentrum Berlin has made this possible. Their transparent photovoltaics have now even made it into mass production, securing the team this year's HZB Technology Transfer Award.
- New world record in materials research - X-ray microscopy with 1000 tomograms per secondTomoscopy is an imaging method in which three-dimensional images of the inside of materials are calculated in rapid succession. Now a team led by HZB physicist Francisco García Moreno has achieved a new world record at the TOMCAT beamline of the Swiss Light Source at the Paul Scherrer Institute: with 1000 tomograms per second, it is now possible to non-destructively document very fast processes and developments in materials on the micrometre scale, such as the burning of a sparkler or the foaming of a metal alloy for the production of stable lightweight materials.
- HZB uses electricity-producing facade wall as real laboratoryIn the presence of the State Secretary for Economic Affairs, Energy and Operations of the State of Berlin, Christian Rickerts, the HZB officially commissioned the solar façade of a new research building on 6 September 2021. What makes it so special is that the elegant façade not only generates up to 50 kilowatts of electricity (peak power). It also provides important insights into the behaviour of the solar modules under different weather conditions.
- Perovskite solar cells: Interfacial loss mechanisms revealed
Metal-organic perovskite materials promise low-cost and high-performance solar cells. Now a group at HZB managed to de-couple the different effects of self-assembled monolayers of organic molecules (SAMs) that reduce losses at the interfaces. Their results help to optimise such functional interlayers.
- Mehr als nur "Fassade": Nachhaltige Energieversorgung durch SolarfassadenEin Beitrag über die nachhaltige Energieversorgung durch Solarfassaden
- Lead-free perovskite solar cells - How fluoride additives improve qualityTin halide perovskites are currently considered the best alternative to their lead-containing counterparts, which are, however, still significantly less efficient and stable. Now, a team led by Prof. Antonio Abate from HZB has analysed the chemical processes in the perovskite precursor solution and the fluoride compounds in detail. Using a clever combination of measurement methods at BESSY II and with NMR at the Humboldt-University Berlin, they were able to show that fluoride prevents the oxidation of tin and leads to a more homogeneous film formation with fewer defects, increasing the quality of the semiconductor layer.
- VIPERLAB: EU project aims to boost perovskite solar industry in EuropeThe HZB is coordinating a major European collaborative project to open up new opportunities for the European solar industry. The VIPERLAB project involves 15 renowned research institutions from Europe, as well as Switzerland and Great Britain. It will be funded within the framework of the EU's Horizon 2020 programme for the next three and a half years with a total of 5.5 million euros, from which the HZB will receive just under 840,000 euros.
- CatLab - Starting signal for a new generation of catalystsThe Helmholtz-Zentrum Berlin (HZB) and the Max Planck Society (MPG) are launching CatLab, their new joint catalysis research centre in Berlin. The inauguration ceremony took place on June 21st in the presence of Dr. Stefan Kaufmann, the Innovation Officer for Green Hydrogen at the Federal Ministry of Education and Research (BMBF) and Member of the federal Bundestag. High-ranking representatives from science, government, and industry took part.
- Perovskite Solar Cells: Insights into early stages of structure formationUsing small-angle scattering at the PTB X-ray beamline of BESSY II, an HZB team was able to experimentally investigate the colloidal chemistry of perovskite precursor solutions used for solar cell production. The results contribute to the targeted and systematic optimization of the manufacturing process and quality of these exciting semiconductor materials.
- Solar cells: Losses made visible on the nanoscaleSolar cells made of crystalline silicon achieve peak efficiencies, especially in combination with selective contacts made of amorphous silicon (a-Si:H). However, their efficiency is limited by losses in these contact layers. Now, for the first time, a team at Helmholtz-Zentrum Berlin (HZB) and the University of Utah, USA, has experimentally shown how such contact layers generate loss currents on the nanometre scale and what their physical origin is. Using a conductive atomic force microscope, they scanned the solar cell surfaces in ultra-high vacuum and detected tiny, nanometre-sized channels for the detrimental dark currents, which are due to disorder in the a-Si:H layer.
- Instrument at BESSY II shows how light activates MoS2 layers to become catalystsThin films of molybdenum and sulfur belong to a class of materials that can be considered for use as photocatalysts. Inexpensive catalysts such as these are needed to produce hydrogen as a fuel using solar energy. However, they are still not very efficient as catalysts. A new instrument at the Helmholtz-Berlin Zentrum’s BESSY II now shows how a light pulse alters the surface properties of the thin film and activates the material as a catalyst.
- Accelerator physics: Experiment reveals new options for synchrotron light sourcesAn international team has shown through a sensational experiment how diverse the possibilities for employing synchrotron light sources are. Accelerator experts from the Helmholtz-Zentrum Berlin (HZB), the German federal metrology institute Physikalisch-Technische Bundesanstalt (PTB), and Tsinghua University in Beijing have used a laser to manipulate electron bunches at PTB's Metrology Light Source so that they emitted intense light pulses having a laser-like character. Using this method, specialised synchrotron radiation sources would potentially be able to fill a gap in the arsenal of available light sources and offer a prototype for industrial applications. The work was published on 24 February 2021 in the leading scientific publication Nature.
- The perfect recipe for efficient perovskite solar cellsA long-cherished dream of materials researchers is a solar cell that converts sunlight into electrical energy as efficiently as silicon, but that can be easily and inexpensively fabricated from abundant materials. Scientists at the Helmholtz-Zentrum Berlin have now come a step closer to achieving this. They have improved a process for vertically depositing a solution made from an inexpensive perovskite solute onto a moving substrate below. Not only have they discovered the crucial role played by one of the solvents used, but they have also taken a closer look at the aging and storage properties of the solution.
- HZB and Humboldt University agree to set up a catalysis laboratoryHelmholtz-Zentrum Berlin (HZB) and Humboldt-Universität zu Berlin (HU) have signed a cooperation agreement with the aim of establishing a joint research laboratory for catalysis in the IRIS research building of HU in Adlershof. The IRIS research building offers optimal conditions for the research and development of complex material systems.
- Perovskite/silicon tandem solar cells on the threshold of 30% efficiencyAn HZB team has published a report in the journal Science on the development of its current world record of 29.15% efficiency for a tandem solar cell made of perovskite and silicon. The tandem cell provided stable performance for 300 hours – even without encapsulation. To accomplish this, the group headed by Prof. Steve Albrecht investigated physical processes at the interfaces to improve the transport of the charge carriers.
- Architectural Design drafts for new CatLab Center awardedAn innovative laboratory and office building for catalysis research will be built in Berlin-Adlershof: CatLab is to become an international beacon for catalysis research and drive forward the development of novel catalyst materials, which are urgently required for the production of green hydrogen for the energy transition. In an architectural competition four winning designs have now been selected. All designs include climate friendly solutions.
- CatLab - A beacon for future hydrogen research
The Helmholtz-Zentrum Berlin and two Max Planck institutes are building a catalysis research platform named CatLab to achieve leaps of innovation in hydrogen research
Hydrogen as a sustainable fuel source will play a key role in our energy system for the future. Hydrogen-based chemical energy media are needed as long-term storage repositories in the energy system and are crucial for climate-neutral design of industrial processes. The German federal government's National Hydrogen Strategy clearly identifies the great need for research in this area, which will be the foundation for breakthroughs and leaps in innovation. The Helmholtz-Zentrum Berlin (HZB) and two Max Planck institutes – the Fritz Haber Institute (FHI) and the Max Planck Institute for Chemical Energy Conversion (MPI CEC) – are pooling their expertise for this purpose and together with Humboldt Universität zu Berlin they are jointly establishing the CatLab research platform in Berlin. CatLab is intended as a bridge between pure research and industry, and is being funded by the German Federal Ministry of Education and Research (BMBF) with more than 50 million euros. In total, the five-year development project will cost about 100 million euros.
- Perovskite Solar Cells: paving the way for rational ink design for industrial-scale manufacturingFor the production of high-quality metal-halide perovskite thin-films for large area photovoltaic modules often optimized inks are used which contain a mixture of solvents. An HZB team at BESSY II has now analysed the crystallisation processes within such mixtures. A model has also been developed to assess the kinetics of the crystallisation processes for different solvent mixtures. The results are of high importance for the further development of perovskite inks for industrial-scale deposition processes of these semiconductors.
- Solar cells: Mapping the landscape of Caesium based inorganic halide perovskitesScientists at HZB have printed and explored different compositions of caesium based halide perovskites (CsPb(BrxI1−x)3 (0 ≤ x ≤ 1)). In a temperature range between room temperature and 300 Celsius, they observe structural phase transitions influencing the electronic properties. The study provides a quick and easy method to assess new compositions of perovskite materials in order to identify candidates for applications in thin film solar cells and optoelectronic devices.
- HZB & IKZ bundle their competencies In crystalline energy and quantum materialsOn September 11, 2020, the Helmholtz-Zentrum Berlin (HZB) and the Leibniz-Institut für Kristallzüchtung (IKZ) signed a cooperation agreement to advance joint research on energy and quantum materials. As part of the cooperation, new types of X-ray optics for synchrotron radiation sources are also being developed.
- Solar-cell façade at HZB undergoes real-life testingSolar-modules shimmer bright blue on the cladding of a new building at the Helmholtz-Zentrum Berlin (HZB). They are special CIGS thin-film modules custom-developed and produced in Germany for integration into the building’s envelope. The solar cladding not only meets part of the power requirement, but is also a realistic laboratory in and of itself: an HZB team is monitoring the long-term behaviour of the modules under varying environmental conditions and evaluating the data.
- HZB and TU Berlin: New joint research group at BESSY IIBirgit Kanngießer is setting up a joint research group to combine X-ray methods in laboratories and at large-scale facilities. In particular, the physicist wants to investigate how X-ray experiments on smaller laboratory instruments can be optimally complemented with more complex experiments that are only possible at synchrotron sources such as BESSY II.
- Silicon-perovskite tandem solar cells: New facilities pave the way for industrial-scale production
Perovskites are regarded as promising materials for solar cells, able to be manufactured at low cost while at the same time being extremely efficient. They are particularly suitable for tandem solar cells that combine a cell made of silicon and one of perovskite. As a result, sunlight is more completely used when generating electrical energy. So far, the advantages of such cells have only been available for use at small laboratory scale. With two new, highly innovative production facilities, researchers at the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) are now creating the basis for future production on an industrial scale.
- Upconversion of photons at low light intensities – the key to new applications in energy and bioengineeringThe region of the spectrum that can be utilised for producing electrical energy can be considerably extended by converting low-energy (longer wavelength) photons into high-energy (shorter wavelength) photons. But so far, this has only been possible at high intensities of light. Now for the first time, scientists from the Helmholtz-Zentrum Berlin (HZB) and the Federal Institute for Materials Research and Testing (BAM) have been able to produce a usable effect from relatively weak light by combining certain nanoparticles with what is known as a meta-surface. This paves the way for future applications in photovoltaics, for the detection of biological substances, and for electrical-field sensors.
- Research team provides concrete approach to improve the performance of CIGS solar cells
A team of researchers used electron microscopes and computer simulations to investigate where losses occur in thin-film solar cells. The researchers from the Martin Luther University Halle-Wittenberg, the Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) and the Helmholtz Zentrum Berlin (HZB) provide specific information on how the already high efficiency of CIGS solar cells can be improved. The results were published in the journal Nature Communication.
- Best electrolyser/photovoltaics combinations demonstrated in test fieldsOne of the most promising ways to increase the availability of solar energy is to convert excess production into hydrogen. The PECSYS project has investigated the best possible material and technology combinations to facilitate such an operation.
- Seminar für Architekt*innen Bauwerkintegrierte Photovoltaik: Architektur – Gestaltung und AusführungIm September veranstaltet die Beratungsstelle für bauwerkintegrierte Photovoltaik (BIPV) „BAIP“ zusammen mit der Architektenkammer Niedersachsen ein Seminar für Architekt*innen zum Thema Bauwerkintegrierte Photovoltaik: Architektur-Gestaltung und Ausführung
- Optimize opto-electronic devices with new compact measuring system
In order to develop efficient opto-electronic devices such as solar cells or LEDs, it is crucial to improve the quality of the semiconductors. To achieve this, it is necessary to determine the luminescence yield of the semiconductor material. For this characterization, a research team at HZB has developed a new measuring device that precisely determines the luminescence and is also very compact. In order to evaluate the potential for commercial applications, the team now receives a Field Study Fellowship from the Helmholtz Association.
- Printed perovskite LEDs – an innovative technique towards a new standard process of electronics manufacturing
A team of researchers from the Helmholtz-Zentrum Berlin (HZB) and Humboldt-Universität zu Berlin has succeeded for the first time in producing light-emitting diodes (LEDs) from a hybrid perovskite semiconductor material using inkjet printing.This opens the door to broad application of these materials in manufacturing many different kinds of electronic components.The scientists achieved the breakthrough with the help of a trick: "inoculating" (or seeding) the surface with specific crystals.
- On the road to non-toxic and stable perovskite solar cellsThe promising halide perovskite materials for solar energy conversion show high efficiencies, but this comes at a cost: The best perovskite materials incorporate toxic lead which poses a hazard to the environment. To replace lead by less toxic elements is not easy since lead-free perovskites show lower stability and poor efficiencies. Now, an international collaboration has engineered a new hybrid perovskite material with promising efficiency and stability.
- Portrait: The athlete in the lab coatSteve Albrecht is researching on perovskite solar cells and holds several efficiency world records with his team. Back in his schooldays, he was going to become either a competitive gymnast or a scientist. He chose science, but the same athletic ambition still drives his research forward.
- Tandem solar cell world record: New branch in the NREL chartA special branch in the famous NREL-chart for solar cell world records refers to a newly developed tandem solar cell by HZB teams. The world-record cell combines the semiconductors perovskite and CIGS to a monolithic "two-terminal" tandem cell. Due to the thin-film technologies used, such tandem cells survive much longer in space and can even be produced on flexible films. The new tandem cell achieves a certified efficiency of 24.16 percent.
- 20 percent more patients were treated with proton therapy in 2019
For more than 20 years, Charité - Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have jointly offered the irradiation of eye tumors with protons. In 2019, more patients were treated in Berlin-Wannsee than ever before. 276 patients - 20 percent more than in the previous year - underwent proton therapy. The treatment is specialized in choroidal melanomas of the eye. The proton accelerator at HZB is the only treatment facility for this disease in Germany.
- Doctoral student receives Erhard Höpfner Thesis AwardOn 11 February 2020, Max Grischek received the Erhard Höpfner Thesis Prize, worth 2000 euros, which is awarded by a jury of the Berlin Scientific Society for outstanding theses. Grischek studied at the Technische Universität Berlin and wrote his master thesis in the young investigator research group "Perovskite Tandem Solar Cells" at HZB.
- CIGSe thin-film solar cells: EU Sharc25 project increases efficiencyThin-film solar cells made of copper, indium, gallium, and selenium (CIGSe) are cost-effective to produce and now achieve efficiencies of significantly more than 20 percent. This level of performance was achieved through post-processing with alkali elements, and the procedures are suitable for industrial-scale production. Insights into the beneficial effect of these alkali treatments from the EU Sharc25 project have now been collected in an article published in Advanced Energy Materials.
- Perovskite solar cells: International consensus on ageing measurement protocolsExperts from 51 research institutions have now agreed on the procedures for measuring the stability of perovskite solar cells and assessing their quality. The consensus statement was published in Nature Energy and is considered a milestone for the further development of this new type of solar cell on its way to industrial application.
- World Record: Efficiency of perovskite silicon tandem solar cell jumps to 29.15 per centIn the race for ever higher efficiency levels, an HZB development team has once again pulled ahead. The groups of Steve Albrecht and Bernd Stannowski have developed a tandem solar cell made of the semiconductors perovskite and silicon, that converts 29.15 per cent of the incident light into electrical energy. This value has been officially certified by the CalLab of the Fraunhofer Institute for Solar Energy Systems (ISE) and means that surpassing the 30 per cent efficiency mark is now within reach.
- Invitation: Climate change - from knowledge to action
Climate change and its causes are undisputed. But how do we get from knowledge to action? What can science contribute to this? On Thursday, 5.12.2019 at 17:00 Clara Mayer (Fridays for Future), Volker Quaschning (HTW Berlin and Scientists for Future), Bernd Rech (scientific director of the HZB) and Kira Vinke (Potsdam Institute for Climate Impact Research) will discuss these questions. The event takes place in the Bunsen lecture hall of WISTA in Adlershof and is open to the public. Admission is free.
- Berlin Science Award: Young Talent Award for Steve AlbrechtOn November 7, 2019, Michael Müller, Governing Mayor of Berlin and Senator for Science and Research, honoured outstanding research achievements for the twelfth time. Prof. Dr. Steve Albrecht was honoured this year with the "Nachwuchspreis" (Young Talent Award) for his research on novel tandem solar cells. Albrecht teaches as a junior professor at the Institute for High Frequency and Semiconductor System Technologies at the Technical University of Berlin and heads the research group "Perovskite Tandem Cells" at the Helmholtz-Zentrum Berlin. The Young Talent Award is given to scientists who are not older than 35 years and is endowed with 10,000 euros.
- Reaching climate targets with building integrated PhotovoltaicsBy 2050, the building stock in Germany must be almost climate-neutral in order to achieve the climate targets - an ambitious goal. Especially in cities with multi-storey buildings, roof areas alone do not offer sufficient space to cover a significant portion of the electricity demand with photovoltaics. There is now a wide range of façade elements that generate photovoltaic electricity. So far, however, such building-integrated PV modules have rarely been installed. The Advisory Centre for Building Integrated Photovoltaics (BAIP) at HZB wants to change this:
- HZB awards prize for technology transfer projectOn 15 November, the best innovation project from the HZB will be awarded the Technology Transfer Prize 2019. The award ceremony is open to the public and will take place at 2 p.m. in the BESSY II auditorium at the HZB location in Berlin-Adlershof. All projects submitted to the competition will be presented in an exhibition starting Monday, October 21, initially in Wannsee, and starting November 4 in Adlershof.
- Helmholtz Association promotes HZB cooperation with Slovenia on perovskite silicon tandem solar cellsA HZB team has successfully raised funds from the “Helmholtz European Partnering Program” of the Helmholtz Association to expand cooperation with partners of the University of Ljubljana, Slovenia. The topics of the cooperation are tandem solar cells made of perovskite and silicon and, in particular, their precise characterisation.
- New sample holder for protein crystallographyAn HZB research team has developed a novel sample holder that considerably facilitates the preparation of protein crystals for structural analysis. A short video by the team shows how proteins in solution can be crystallised directly onto the new sample holders themselves, then analysed using the MX beamlines at BESSY II. A patent has already been granted and a manufacturer found.
- World record for tandem perovskite-CIGS solar cellA team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.
- HZB strengthens its technology transferThe Helmholtz-Zentrum Berlin (HZB) wants to bring technologies to market faster together with industrial partners and use its expertise in materials and energy research to investigate questions from industry in joint projects. The newly established "Technology Transfer and Innovation" department will identify cooperation partners and applications that are of industrial interest.
- FOCUS TOPIC: Catching more light in solar cellsChristiane Becker uses microscopic structures to increase the amount of light captured in solar cells and is currently scaling up the technology for industrial application. “On top of everything else, there’s this spirit at HZB that we are working on the renewable energies of the future, and that is incredibly inspiring,” she relates in portrait.
- Steve Albrecht wins the 2019 Karl Scheel PrizeThis year's Karl Scheel Prize from the Physikalische Gesellschaft zu Berlin honours Steve Albrecht of the Helmholtz-Zentrum Berlin für Materialien und Energie for his work in the field of highly efficient tandem solar cell absorbers made of metal-halide perovskites.
- 1st place for "Glowing Silicon Lake" at the HZB photo competition for the Long Night of ScienceMore than 200 people have chosen their favourite pictures in the photo competition "Moments at the HZB" during the Long Night of Science. The winners have now been chosen, but the decision was extremely close.
- Photovoltaics are growing faster than expected in the global energy systemDramatic cost reductions and the rapid expansion of production capacities make photovoltaics one of the most attractive technologies for a global energy turnaround. Not only the electricity sector, but also transport, heating, industry and chemical processes will in future be supplied primarily by solar power, because it is already the cheapest form of electricity generation in large parts of the world. This is where opportunities and challenges lie - at the level of the energy system as well as for research and industry. Leading international photovoltaic researchers from the Global Alliance for Solar Energy Research Institutes describe the cornerstones of future developments in an article published in the journal "Science" on 31 May.
- Development of a miniaturised EPR spectrometerSeveral research institutions are developing a miniaturized electron paramagnetic resonance (EPR) device with industrial partner Bruker to investigate semiconductor materials, solar cells, catalysts and electrodes for fuel cells and batteries. The Federal Ministry of Education and Research (BMBF) is funding the "EPR-on-a-Chip" or EPRoC project with 6.7 million euros. On June 3, 2019, the kick-off meeting took place at the Helmholtz-Zentrum Berlin.
- Thin-film PV is key technology to drive global energy transitionThe German research institutes ZSW and HZB see huge potential in CIGS for both climate and business. CIGS thin-film PV is set to become a key pillar of the global transition towards renewable energy sources. With its high performance, low costs, small carbon footprint, and visual appearance, CIGS has some considerable advantages against other technologies, especially when it comes to highly demanding applications like buildings and vehicles. A new whitepaper compiled by ZSW and HZB describes in detail the benefits of CIGS and the huge business opportunities arising from it.
- Towards the Climate Neutral City: Independent consulting office for integrating photovoltaics into buildingsThe Helmholtz-Zentrum Berlin is opening a national consulting office for integrating photovoltaics into buildings (BAIP) this spring. The consulting office will support building owners, architects, and municipal planners in activating building envelopes for power generation. The project is being funded by the Helmholtz Association over a period of four years as part of its knowledge transfer programme.
- Neutronenforschung hilft bei der Entwicklung von zerstörungsfreien PrüfverfahrenMaterialermüdung zeigt sich häufig zuerst daran, dass im Innern des Materials Bereiche mit stark unterschiedlichen Eigenspannungen aneinandergrenzen. An der Neutronenquelle BER II am HZB hat ein Team der Bundesanstalt für Materialforschung und –prüfung (BAM) die Eigenspannungen von Schweißnähten aus ferromagnetischem Stahl analysiert. Die Ergebnisse helfen zerstörungsfreie elektromagnetische Prüfverfahren zu verbessern.
- Delegation from Jordan visited the HZBThe Helmholtz-Zentrum Berlin (HZB) will intensify its cooperation with Jordanian large-scale research facilities. This was agreed between Prof. Dr. Jan Lüning and representatives of a high-ranking Jordanian research delegation, which visited the HZB at the end of November 2018.
- HZB builds undulator for SESAME in JordanThe Helmholtz-Zentrum Berlin is building an APPLE II undulator for the SESAME synchrotron light source in Jordan. The undulator will be used at the Helmholtz SESAME beamline (HESEB) that will be set up there by five Helmholtz Centres. The Helmholtz Association is investing 3.5 million euros in this project coordinated by DESY.
- Neutrons scan magnetic fields inside samplesWith a newly developed neutron tomography technique, an HZB team has been able to map for the first time magnetic field lines inside materials at the BER II research reactor. Tensorial neutron tomography promises new insights into superconductors, battery electrodes, and other energy-related materials.
- Patented nanostructure for solar cells: Rough optics, smooth surfaceThin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.
- 2.8 Mio Euro Funding for preparing perovskite solar cells for high volume manufacturingHZB participates in a new consortium for Perovskite solar technology that is led by Oxford PV Germany GmbH. The consortium is funded by the German Ministry of Economics and Energy with 2.8 Million Euros and aims to further demonstrate the manufacturability of perovskite-silicon tandem solar cells.
- Printing solar cells and organic LEDsHumboldt-Universität zu Berlin and Helmholtz-Zentrum Berlin form a joint lab and research group “Generative production processes for hybrid components”.
- World record: Fastest 3D tomographic images at BESSY IIAn HZB team has developed an ingenious precision rotary table at the EDDI beamline at BESSY II and combined it with particularly fast optics. This enabled them to document the formation of pores in grains of metal during foaming processes at 25 tomographic images per second - a world record.
- Wissenstransfer: Neues Standardwerk zu Energietechnologien in DeutschlandVertreter des Wuppertal Instituts haben dem Bundesministerium für Wirtschaft und Energie (BMWi) einen mehrbändigen Bericht zu Energietechnologien übergeben. Dabei haben Experten aus dem HZB-Institut PVcomB am Themenfeld Photovoltaik mitgewirkt. Im Herbst verabschiedet die Bundesregierung das neue 7. Energieforschungsprogramm (EFP). Der Bericht liefert eine wissenschaftliche Basis für die Entwicklung des Programms.
- GRECO kick-off in Madrid: advancing photovoltaics through “open science”The Helmholtz-Zentrum Berlin (HZB) is one of ten international partners in the GRECO pilot project funded under the European Union framework programme Horizon 2020. They intend to jointly test OpenScience approaches for exchanging knowledge and research data in order to accelerate the development of innovative PV products worldwide. GRECO will receive three million euros in funding through 2021.
- HZB expert contributes to Leibniz platform GraFOxThe platform "GraFOx" of the Leibniz Association bundles the activities and competences of Berlin research institutes and universities in the field of oxide research for electronic applications. Now Prof. Dr. Catherine Dubourdieu has been involved as an Associate Partner. The internationally renowned expert heads the Institute "Functional Oxides for Energy-Efficient Information Technology" at the Helmholtz-Zentrum Berlin.
- Silicon heterojunction solar cell with a certified 23.1 % energy conversion efficiencyAfter further optimization of the baseline process for industrial silicon heterojunction (SHJ) solar cells, the accredited metrology lab ISFH CalTeC now certified an efficiency of 23.1 % for a 4 cm² solar cell. This performance is among the best in the world and demonstrates the leading role of HZB in this technology in Germany and Europe.
- Perovskite-silicon solar cell research collaboration hits 25.2% efficiencyA 1 cm2 perovskite silicon tandem solar cell achieves an independently certified efficiency of 25.2 %. This was presented this week at an international conference in Hawaii, USA. The cell was developed jointly by HZB, Oxford University and Oxford PV - The Perovskite CompanyTM.
- Alliance Building Integrated Photovoltaics: Björn Rau joins Management BoardThe General Meeting of Alliance for Builiding Integrated Photovoltaics (BIPV) has unanimously elected physicist and photovoltaic expert Dr. Björn Rau, Helmholtz-Zentrum Berlin, to the BIPV Management Board.
- HZB experts present cooperation opportunities at Intersolar Europe in MunichThe international exhibition “Intersolar” brings photovoltaic research and the solar industry together. It is a perfect opportunity for researchers from Helmholtz-Zentrum Berlin to present thin-film photovoltaic technologies and projects, including for example perovskite solar cells and tandem solar cells.
- "Tandemtechnologie" - Wie die Produktion von Solarzellen nach Europa zurückkehren könnteDer Direktor des PVcomB am HZB im pv-magazine Interview
"Das Potenzial der Photovoltaik ist nicht mal annähernd ausgereizt", sagt Rutger Schlatmann im Interview. So liege der Wirkungsgrade bei kommerziellen Modulen aktuell bei zirka 20 Prozent. Mit Tandem-Solarmodulen wären bis zu 40 Prozent möglich - und sie ließen sich wahrscheinlich auch wirtschaftlich produzieren. Schlatmann zeigt die Vorteile der Dünnschicht- und der Wafer-Technologie auf und wagt eine Prognose: Welche Technologie wird das Rennen machen? Und unter welchen Bedingungen könnte die Photovoltaik-Produktion nach Deutschland zurückkehren? Lesen Sie mehr im Interview des pv magazine.
- Registration for Summer School Quantsol is now open!It is already the eleventh time that the International Summer School on Photovoltaics and New Concepts of Quantum Solar Energy Conversion (Quantsol) will be held from 2. to 9. September 2018 in Hirschegg, Kleinwalsertal, Austria. The school is organized by the Helmholtz-Zentrum Berlin and the Technical University of Ilmenau. Applications can be submitted through the school’s homepage until May 18th , 2018.
- New solar solutions for sustainable buildings and citiesAt the Interdisciplinary conference on „INNOVATION IN SOLAR BUILDING SKINS & ENERGY EFFICIENCY TOWARDS SUSTAINABLE CITIES”, 19th to 20th march in Berlin, experts from the building sector, politics, finance and photovoltaics have discussed the implementation of Building Integrated Photovoltaics (BIPV). In a very lively and active workshop, drivers and barriers were identified.
- Oxford PV collaborates with HZB to move perovskite solar cells closer to commercialisationPerovskite solar technology leader Oxford PV collaborates with leading German research centre to support the accelerated transfer of its technology into silicon cell manufacturing lines.
- Accolade and social commitment at the same time: Prof. Dr. Bernd Rech has become a new member of acatechThe German “National Academy of Science and Engineering – acatech” has admitted Prof. Dr. Bernd Rech, an expert in renewable energies, into its circle of members. Bernd Rech has headed the Institute of Silicon Photovoltaics at Helmholtz-Zentrum Berlin (HZB) since 2006 and has been the acting Scientific Director of HZB since May 2017. For many years, and in many capacities, he has been a champion for knowledge transfer. “This appointment is an accolade for his scientific accomplishment, and at the same time involves an honorary mandate,” acatech writes in its press release. The federal- and state-funded academy advises social and political actors on technological matters.
- Progress in solar technologies – from research to applicationEU group project presents its results: high efficiencies with less material
- PVcomB and AVANCIS launch joint MyCIGS research project in order to improve outdoor performance of thin film CIGS solar modulesThe Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin (PVcomB) is contributing its expertise to improving copper-indium-gallium-sulphide (CIGS) thin-film production in the MyCIGS collaborative research project. CIGS-module manufacturer AVANCIS in Munich is coordinating this project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi). The Carl von Ossietzky University of Oldenburg (Oldenburg University) and Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU) are also partners in the project.
- Miniaturised spectrometer wins first prize at international conferenceA Helmholtz-Zentrum Berlin (HZB) team together with experts at Ulm University and the University of Stuttgart have designed an electron spin resonance spectrometer that fits a box 10 cm on a side. The team presented the device to a technology jury at the international IEEE Sensors 2017 conference in Glasgow, Scotland and received the first prize of the best live demonstration award . ESR spectroscopy is extremely useful for research in energy-related materials such as catalysts, solar cells, and battery electrodes
- Great Interest in the HySPRINT Industry Day: Joining forces to advance perovskite solar cellsNo fewer than 70 participants attended the first Industry Day of the Helmholtz Innovation Lab HySPRINT devoted to the topic of perovskite solar cells at Helmholtz-Zentrum Berlin (HZB) on 13 October 2017. This far exceeded the expectations of the event hosts. The knowledge shared on Industry Day will serve as the basis for deepening the collaboration even further with strategically important companies in the scope of HySPRINT.
- Invitation to HySPRINT – Industry Day “New Frontiers in PV Research: Emerging Perovskite Semiconductors”On 13 October, Helmholtz-Zentrum Berlin will be hosting its first Industry Day on the topic of Perovskite Solar Cells. Following a recap of the current state of research and development and the future potential of perovskite solar cells, participants from industry will be able to give a brief presentation to show their company’s interest in the field. Intensive discussions during the Industry Day will be the starting point for future cooperation.
- Intersolar Europe in Munich: HZB research meets solar industryAt the major international photovoltaics exhibition from 31 May to 2 June 2017, Helmholtz-Zentrum Berlin (HZB) will be exhibiting solar energy research projects and presenting opportunities for industrial cooperation in the field of photovoltaics (PV).
- Better cathode materials for Lithium-Sulphur-BatteriesA team at the Helmholtz-Zentrum Berlin (HZB) has for the first time fabricated a nanomaterial made from nanoparticles of a titanium oxide compound (Ti4O7) that is characterised by an extremely large surface area, and tested it as a cathode material in lithium-sulphur batteries. The highly porous nanomaterial possesses high storage capacity that remains nearly constant over many charging cycles.
- Young investigator group at HZB: Scaling perovskite cellsThe new Young Investigator Group Hy-Per-FORME led by Dr. Eva Unger is working on scaling all processing steps to enable manufacturing of perovskite solar cells on larger areas, thus brigding he gap between lab and industry.
- Solar based hydrogen generation: EU-project PECSYS aiming for technological breakthroughDevelopment of demonstrators measuring up to ten square meters in area planned
- PVcomB will help mass-produce the raw photovoltaic materials used in Wysips® technologySunpartner Technologies and Helmholtz-Zentrum Berlin sign license agreement
- 7.4 million euros from the EFRE fund: HZB is setting up a new application laboratory for developing superconducting accelerator componentsHelmholtz-Zentrum Berlin is receiving 7.4 million euros from the European Regional Development Fund (EFRE). The money is being used to set up the application laboratory “SupraLab@HZB” for the advancement of high-current superconducting cavities. These components will be needed for operating the next generation of novel, high-performance light sources. The laboratory will also provide complex superconducting component test beds for use by companies and research institutes in the region.
- Research for Germany’s energy transition: EMIL@BESSY II approved for the Kopernikus “Power-to-X” projectThe storage of excess solar and wind power is one of the greatest challenges in Germany’s energy transition. To address this, the German Federal Ministry for Education and Research (BMBF) has created the “Power-to-X” (P2X) project under its Kopernikus programme. P2X will advance research into converting electrical energy from the sun and wind into basic chemical compounds, gaseous energy media, and fuels. A total of 17 research institutions, 26 industrial enterprises, as well as three non-governmental organisations are involved, and the BMBF is funding the first development phase of the project at a level of 30 million Euros. The Helmholtz-Zentrum Berlin will participate in the planned research, using the advanced synthesis capabilities and the BESSY II synchrotron-based X-ray characterization tools at the recently inaugurated EMIL@BESSY II laboratory complex.
- Speeding up CIGS solar cell manufactureSpeeding up CIGS solar cell manufacture
- Helmholtz Innovation Labs: HySPRINT at HZBHZB will be setting up the new Helmholtz HySPRINT Innovation Lab for jointly developing new combinations of materials and processes in energy applications with commercial partners. Silicon and metal-organic perovskite crystals will be the centre point of the Lab’s work. The Helmholtz Association is supporting the project for the next five years with 1.9 million Euros from its Initiative and Networking Fund, with additional contributions from HZB itself as well as from industry.
- The solar technologies race: thin-film photovoltaics are catching upZSW and HZB present current data – with new opportunities for Europe’s solar industry
- Three days for exchange between Users of BESSY II and BER II and HZB-scientistsThe Seventh Joint BER II and BESSY II User Meeting will take place at WISTA, Berlin-Adlershof on December 9th and 10th, the neutrons session are at Berlin-Wannsee on December 11th. The Verein Freundeskreis Helmholtz-Zentrum Berlin e.V. will bestow the Innovation Award and the Ernst-Eckart-Koch Prize. Public highlights are a science slam on Wednesday, 18:30 and the public lecture by David Cahen on the power of science to bridge ideological differences (“Science: Bridge over troubled water“, Thursday 17:00). The public lecture and the science slam are open for everybody.
- Helmholtz-Zentrum Berlin successfully at international Photovoltaic Conference in HamburgFrom 14. to 18. September more than 2.500 experts on photovoltaics from all over the world met at the 31th EU PVSEC in Hamburg to discuss the latest developments and innovations. HZB was present at the conference with oral and poster presentations and in addition with an booth at the exibition. A joint publication by the Competence Centre for Photovoltaics (PVcomB) and Institute for Silicon Photovoltaics was chosen from 1,300 contributions under the best TOP 20 of the conference.
- New opportunities for CIGS solar cellsDynamic CIGS solar cell technology workshop gives rise to optimism: experts predict higher efficiencies and lean production technologies
- Maximum efficiency, minimum materials and complexitySilicon-based thin-film solar cell with a supplementary organic layer can utilise infrared light as well
- Ausgründungsvorhaben µTools wird durch den Helmholtz Enterprise-Fonds gefördertDas Ausgründungsvorhaben µTools des Anwenderzentrum für Mikrotechnik wird vom Helmholtz Enterprise-Fonds für ein Jahr gefördert. Ziel der Förderung ist die Unterstützung bei der Marktanalyse und einer abgestimmten Marketingstrategie sowie die Erstellung eines Businessplans.
- Kompetenzzentrum Dünnschicht- und Nanotechnologie für Photovoltaik wird in Berlin aufgebaut
Das Hahn-Meitner-Institut (HMI), die Technische Universität Berlin (TUB) sowie acht führende Industrie-Unternehmen unterzeichnen ein Memorandum of Understanding (MoU) zur Gründung des Kompetenzzentrum Dünnschicht- und Nanotechnologie für Photovoltaik.
- EU-Projekt ATHLET will Dünnschichtsolarzellen an den Markt bringen
Die Kostensenkung von Solarzellen ist die zentrale Herausforderung der modernen Photovoltaik. In Berlin startet am 20. Februar das europaweit größte Forschungsprojekt, das sich dieser Herausforderung stellt. Universitäten, Forschungseinrichtungen und Unternehmen aus 11 Ländern arbeiten zusammen, um den Übergang der zweiten Generation von Solarzellen, so genannten Dünnschichtzellen, aus den Laboren in den Markt zu beschleunigen.
- Nanoröhrchen sollen Bildschirme zum Leuchten bringen
Der von IBM-Deutschland gestiftete Hahn-Meitner-Technologie-Transfer- Preis zeichnet Materialforscher des Hahn-Meitner-Instituts aus. Fünf Forscher haben unter Leitung von Prof. Dr. Alois Weidinger für ihre innovativen - und vermarktungsfähigen - Entwicklungsarbeiten erhalten. Ihre Forschungsergebnisse könnten die Herstellung neuartiger Flachbildschirme, so genannter Feld-Emissions-Displays (FED), entscheidend verbessern.