From Excited Atoms to Functionality – ERC Advanced Grant Awarded to Alexander Föhlisch

Alexander Föhlisch is head of the HZB Institute Methods and Instrumentation for Synchrotron Radiation Research and holds a professorship at University Potsdam.

Alexander Föhlisch is head of the HZB Institute Methods and Instrumentation for Synchrotron Radiation Research and holds a professorship at University Potsdam. © HZB

Under the EU Horizon 2020 Programme for Research and Innovation, Alexander Föhlisch has been awarded an ERC Advanced Grant. The physicists is holding a joint appointment at the Institute for Physics and Astronomy of the University of Potsdam and at the Helmholtz-Zentrum Berlin für Materialien und Energie. He is to receive a total of 2.5 million Euros over a five-year period to support his work on highly selective methods of detection using synchrotron light and X-ray lasers.

The European Research Council (ERC) promotes unconventional, trailblazing research and supports outstanding researchers. Leading scientists at the University of Potsdam are presently carrying out work under six other ERC grants.

The new research project is named “Excited-State Dynamics from Anti-Stokes and Non-Linear Resonant Inelastic X-Ray Scattering” (EDAX). Under this programme, Prof. Föhlisch will study how chemical reaction pathways and phase-transition behaviour can be probed using novel X-ray spectrographic methods. These will serve as a foundation for efficient energy conversion and future energy-efficient information technologies. The University of Potsdam is pushing ahead with cutting-edge research through the EDAX project and consolidating the rising success of the University in EU research programmes.

Alexander Föhlisch studied physics at Eberhard Karls Universität Tübingen and received his German Diplom degree from the University of Hamburg and Master’s degree in physics from the State University of New York at Stony Brook (SUNY). Prior to completing his research and teaching responsibilities for his professorial qualification in Experimental Physics at the University of Hamburg, he conducted his doctoral research at the Advanced Light Source of the Lawrence Berkeley National Laboratory and received his doctoral degree from Uppsala University in Sweden. As a jointly appointed Professor at the University of Potsdam and the Helmholtz-Zentrum Berlin, he is determining the electronic structure and ultrafast dynamics of atomic entities using innovative X-ray methods. Fundamental properties of materials – such as molecular dynamics at boundaries, switching processes in solids and chemical bonding at active centres – can be determined this way.

Uni Potsdam/HZB


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.