At an international conference in Berlin, researchers were discussing options for using X-rays to take time-resolved measurements

Scientists from all over the world discussed the challanges of messuring the dynamic processes in different materials with X-rays.

Scientists from all over the world discussed the challanges of messuring the dynamic processes in different materials with X-rays.

The participants.

The participants.

The Helmholtz Virtual Institute “Dynamic pathways in multidimensional landscapes” is striving for a holistic view of material properties

In the heart of Berlin, 85 scientists came together on the occasion of an international conference in order to network as part of the Helmholtz Virtual Institute “Dynamic pathways in multidimensional landscapes” and gain new impulses for future research. The focus was on examining ultrafast dynamics within a broad material spectrum from molecules to nanostructures to strongly correlated solids. The conference took place from September 16 through 20 at the German Physical Society’s Magnus House in Berlin.

Using X-ray methods, the scientists are striving for a holistic view of different systems' properties determined by interactions among internal degrees of freedom and their interactions with the environment. The invited presentations covered the whole spectrum – from experimental aspects all the way to theoretical models. In that sense, the meeting of these different experts on the occasion of this conference was decidedly unique – and one of the virtual institute's key objectives. As such, every researcher from every available free electron laser (FEL) in the field of X-rays was represented. Over the last several years, FELs have established themselves as the single most important tool in the X-ray based study of ultrafast dynamics of matter. The SLAC’s Prof. Jo Stöhr gave a passionate talk on the major differences between interactions with matter of synchrotron light and FEL X-rays, respectively.

Stöhr is also scheduled to give a “Distinguished Lecture” on December 9, 2013, at the Helmholtz Zentrum Berlin.

The scientific scope of the conference included sessions on specific material classes and experimental techniques with a focus on:
- quantum materials, magnetism, and correlated solids
- molecular dynamics in physical chemistry and catalysis
- interactions of X-ray photons with matter
- atomic structural analysis using coherent scattering, diffraction and imaging

Attendees considered the poster session, where 26 submissions from junior researchers were being exhibited, a particular success. The posters helped reinforce the virtual institute’s breadth of research topics and prompted discussions.

As part of the Helmholtz Virtual Institute “Dynamic pathways in multidimensional landscapes,” scientists from the HZB, DESY, and from two German universities are together doing research on complex materials in collaboration with both national and international partners.  Prof. Dr. Alexander Föhlisch is the spokeman of the virtual Helmholtz institute and leads the "Institute Methods and Instrumentation for Synchrotron Radiation Research" at HZB.

(sz)


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.