At an international conference in Berlin, researchers were discussing options for using X-rays to take time-resolved measurements

Scientists from all over the world discussed the challanges of messuring the dynamic processes in different materials with X-rays.

Scientists from all over the world discussed the challanges of messuring the dynamic processes in different materials with X-rays.

The participants.

The participants.

The Helmholtz Virtual Institute “Dynamic pathways in multidimensional landscapes” is striving for a holistic view of material properties

In the heart of Berlin, 85 scientists came together on the occasion of an international conference in order to network as part of the Helmholtz Virtual Institute “Dynamic pathways in multidimensional landscapes” and gain new impulses for future research. The focus was on examining ultrafast dynamics within a broad material spectrum from molecules to nanostructures to strongly correlated solids. The conference took place from September 16 through 20 at the German Physical Society’s Magnus House in Berlin.

Using X-ray methods, the scientists are striving for a holistic view of different systems' properties determined by interactions among internal degrees of freedom and their interactions with the environment. The invited presentations covered the whole spectrum – from experimental aspects all the way to theoretical models. In that sense, the meeting of these different experts on the occasion of this conference was decidedly unique – and one of the virtual institute's key objectives. As such, every researcher from every available free electron laser (FEL) in the field of X-rays was represented. Over the last several years, FELs have established themselves as the single most important tool in the X-ray based study of ultrafast dynamics of matter. The SLAC’s Prof. Jo Stöhr gave a passionate talk on the major differences between interactions with matter of synchrotron light and FEL X-rays, respectively.

Stöhr is also scheduled to give a “Distinguished Lecture” on December 9, 2013, at the Helmholtz Zentrum Berlin.

The scientific scope of the conference included sessions on specific material classes and experimental techniques with a focus on:
- quantum materials, magnetism, and correlated solids
- molecular dynamics in physical chemistry and catalysis
- interactions of X-ray photons with matter
- atomic structural analysis using coherent scattering, diffraction and imaging

Attendees considered the poster session, where 26 submissions from junior researchers were being exhibited, a particular success. The posters helped reinforce the virtual institute’s breadth of research topics and prompted discussions.

As part of the Helmholtz Virtual Institute “Dynamic pathways in multidimensional landscapes,” scientists from the HZB, DESY, and from two German universities are together doing research on complex materials in collaboration with both national and international partners.  Prof. Dr. Alexander Föhlisch is the spokeman of the virtual Helmholtz institute and leads the "Institute Methods and Instrumentation for Synchrotron Radiation Research" at HZB.

(sz)

  • Copy link

You might also be interested in

  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.
  • Innovative battery electrode made from tin foam
    Science Highlight
    24.02.2025
    Innovative battery electrode made from tin foam
    Metal-based electrodes in lithium-ion batteries promise significantly higher capacities than conventional graphite electrodes. Unfortunately, they degrade due to mechanical stress during charging and discharging cycles. A team at HZB has now shown that a highly porous tin foam is much better at absorbing mechanical stress during charging cycles. This makes tin foam an interesting material for lithium batteries.