Humboldt Fellow joins HZB for battery research

Dr. Wenxi Wang specialises in the design of organic electrodes for lithium-sulfur and zinc-ion batteries and investigates interactions between ions and active materials.

Dr. Wenxi Wang specialises in the design of organic electrodes for lithium-sulfur and zinc-ion batteries and investigates interactions between ions and active materials. © arö/HZB

Dr. Wenxi Wang is working in the team of Prof. Yan Lu as Humboldt Foundation postdoctoral fellow. He studied at the Southern University of Science and Technology in Shenzhen, China, and completed his doctorate at the King Abdullah University of Science and Technology in Saudi Arabia. He specialises in the precise design of organic electrodes for lithium-sulfur and zinc-ion batteries and the investigation of the interactions between ions and active materials.

"At Helmholtz-Zentrum Berlin I find excellent conditions to deepen my research," says Wenxi Wang. Prof. Yan Lu's group has extensive experience in the synthesis and characterisation of novel electrode materials and state-of-the-art infrastructures for battery research. In addition, the X-ray source BESSY II at HZB offers a variety of spectroscopic methods to analyse electrochemical reactions in real time.

Lithium-sulfur (Li-S) batteries are considered one of the most interesting technologies to replace lithium-ion batteries due to their extremely high energy density and cheap starting materials. However, their performance still falls far short of expectations due, in part due to polysulfide intermediates that form during charging cycles. Porous host materials can trap such polysulfides, improving the energy density and lifetime of Li-S batteries. "My research project focuses on the precise design of organic-based host materials with suitable pore sizes and functional groups (Covalent Organic Frameworks, COF) to enable high-performance Li-S batteries and deepen our understanding of their mechanisms," says Wang.

arö


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.