Rhombohedral graphite as a model for quantum magnetism

Rhombohedral graphite (right) consists of staggered graphene layers.

Rhombohedral graphite (right) consists of staggered graphene layers. © 10.1126/sciadv.abo6879

<p class="Default">The surface state of RG is visualized as red spheres centered on the carbon atoms in the top graphene layer. The size of the spheres is proportional to the density of electrons on the carbon atoms. It can also be called a 2D electron system.

The surface state of RG is visualized as red spheres centered on the carbon atoms in the top graphene layer. The size of the spheres is proportional to the density of electrons on the carbon atoms. It can also be called a 2D electron system.

Graphene is an extremely exciting material. Now a graphene variant shows another talent: rhombohedral graphite made of several layers slightly offset from each other could enlighten the hidden physics in quantum magnets.

Graphene materials are made of carbon atoms only, the basic shape is a honeycomb structure. But there are many variants with amazingly versatile properties. For example, stacks of graphene layers* can host a wide variety of quasiparticles and many-body phenomena: From Dirac fermions in single layers to exotic superconductivity in twisted double layers.

A stack of Honeycombs

In rhombohedral graphite (RG), the honeycomb layers are stacked on top of each other, with a specific shift or offset. This leads to a special electronic structure with very flat bands on the surface. Like in a topological insulator, charge carriers move freely at the surface only. Last year, it was shown that trilayers of RG also harbour ferromagnetism and unconventional superconductivity. And: The strength of the interactions increases with the number of layers.

Combination of experimental and theoretical results

A team from the Centre of Energy Research (Topology in Nanostructures, Momentum research group), Budapest, Hungary and at HZB has now examined the surface of multilayer RG samples under a scanning tunnelling microscope for the first time. They could precisely map the band structure and electronic properties and discovered unexpectedly rich many-body ground states. They also worked on various models of quantum physics in order to understand hidden processes and interactions in the samples. 

Link between graphene-systems and quantum magnets

"The interesting thing about rhombohedral graphite is that this material also has so-called spin edge states, which occur in quantum magnets. The work thus connects two major areas of condensed matter: graphene-based systems and quantum magnets," says Dr Imre Hagymási, first author of the paper, which has now appeared in Science Advances.

Rhombohedrical graphene as a tunable platform

The study offers new insights into the interplay between topology and many-body physics and thus the chance to shed light on the physics in quantum magnets. At present, even simple quantum magnets are not fully understood. Yet quantum magnets also play a role in highly topical issues such as high-temperature cuprate superconductors. RG offers an alternative platform for the study of such correlated phenomena. A platform that is tunable by electric fields, strain, etc. and has a very simple crystal structure compared to other correlated materials. "These results are really helpful for the whole research field," says Hagymási.

*Note: Graphene is strictly one layer whereas the arrangement of graphene layers can be called graphite.

arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.
  • Perovskite solar cells: TEAM PV develops reproducibility and comparability
    News
    22.10.2024
    Perovskite solar cells: TEAM PV develops reproducibility and comparability
    Ten teams at Helmholtz-Zentrum Berlin are building a long-term international alliance to converge practices and develop reproducibility and comparability in perovskite materials. The TEAM PV project is funded by the Federal Ministry of Education and Research (BMBF), Germany.