Rhomboedrischer Graphit als Modell für Quantenmagnetismus

Rhomboedrischer Graphit besteht aus leicht gegeneinander verschobenen Graphen-Schichten. 

Rhomboedrischer Graphit besteht aus leicht gegeneinander verschobenen Graphen-Schichten.  © 10.1126/sciadv.abo6879

<p class="Default">Auf der Oberfl&auml;che von rhomboedrischem Graphit k&ouml;nnen sich Elektronen in 2D frei bewegen. Visualisiert wird dies hier durch die roten Kugeln um die Kohlenstoff-Atome der obersten Graphen-Lage.

Auf der Oberfläche von rhomboedrischem Graphit können sich Elektronen in 2D frei bewegen. Visualisiert wird dies hier durch die roten Kugeln um die Kohlenstoff-Atome der obersten Graphen-Lage.

Graphen ist ein äußerst spannendes Material. Nun zeigt eine Graphen-Variante ein weiteres Talent: Rhomboedrischer Graphit aus mehreren, leicht gegeneinander versetzten Schichten könnte die verborgene Physik in Quantenmagneten aufklären.

Graphen-Materialien bestehen nur aus Kohlenstoffatomen, die Grundform ist eine einlagige Bienenwabenstruktur. Aber es gibt einige Varianten mit erstaunlich vielseitigen Eigenschaften. So können beispielsweise Stapel von Graphenschichten* eine Vielzahl von Quasiteilchen und Vielteilchenphänomenen beherbergen: Von Dirac-Fermionen in Einzelschichten bis hin zu exotischer Supraleitfähigkeit in verdrillten Doppelschichten.

Freie Ladungsträger an der Oberfläche

In rhomboedrischem Graphit (RG) sind die wabenförmigen Schichten mit einem bestimmten Versatz übereinander gestapelt. Dies führt zu einer besonderen elektronischen Struktur mit sehr flachen Bändern an der Oberfläche. Wie in einem topologischen Isolator bewegen sich die Ladungsträger nur an der Oberfläche frei.

Letztes Jahr wurde gezeigt, dass Dreischichten aus RG auch Ferromagnetismus und unkonventionelle Supraleitung aufweisen. Und: Die Stärke der Wechselwirkungen nimmt mit der Anzahl der Schichten zu.

Experimentelle und theoretische Analysen

Ein Team vom Zentrum für Energieforschung, Budapest, Ungarn und am HZB hat nun erstmals die Oberfläche von mehrschichtigen RG-Proben unter einem Rastertunnelmikroskop untersucht. Sie konnten die Bandstruktur und die elektronischen Eigenschaften präzise abbilden und entdeckten unerwartet reiche Vielteilchen-Grundzustände. Zudem arbeiteten sie mit verschiedenen Modellen der Quantenphysik, um verborgene Prozesse und Wechselwirkungen in den Proben zu verstehen. 

Bezug zu Quantenmagnetismus

"Das Interessante an rhomboedrischem Graphit ist, dass dieses Material auch sogenannte Spin-Kanten-Zustände aufweist, die in Quantenmagneten vorkommen. Die Arbeit verbindet somit zwei wichtige Bereiche der kondensierten Materie: Graphen-basierte Systeme und Quantenmagnete", sagt Dr. Imre Hagymási, Erstautor der Arbeit, die jetzt in Science Advances erschienen ist.

Ein flexibles Modellsystem

Die Studie bietet neue Einblicke in das Zusammenspiel von Topologie und Vielteilchenphysik und damit die Chance, die Physik in Quantenmagneten zu erhellen. Derzeit sind selbst einfache Quantenmagnete noch nicht vollständig verstanden. Quantenmagnete spielen aber auch bei hochaktuellen Themen wie den Hochtemperatur-Kuprat-Supraleitern eine Rolle. RG bietet eine alternative Plattform für die Untersuchung solcher korrelierter Phänomene. Eine Plattform, die durch elektrische Felder, Dehnung usw. einstellbar ist und im Vergleich zu anderen korrelierten Materialien eine sehr einfache Kristallstruktur aufweist. "Diese Ergebnisse sind wirklich hilfreich für das gesamte Forschungsgebiet", sagt Hagymási.

*Anmerkung:  Graphen besteht eigentlich nur aus einer einzigen Lage von vernetzten Kohlenstoff-Atomen , mehrere Lagen solcher Graphen-Schichten werden als Graphit bezeichnet.

 

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Science Highlight
    01.07.2024
    Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Stellt man aus Biomasse Biodiesel her, fällt als Nebenprodukt Glycerin an. Bislang wird dieses Nebenprodukt jedoch wenig genutzt, obwohl es durch Oxidation in photoelektrochemischen Reaktoren (PEC) zu wertvolleren Chemikalien verarbeitet werden könnte. Der Grund dafür: geringe Effizienz und Selektivität. Nun hat ein Team um Dr. Marco Favaro vom Institut für Solare Brennstoffe am HZB den Einfluss der Elektrolyte auf die Effizienz der Glycerin-Oxidations-Reaktion in PEC-Reaktoren untersucht und Ergebnisse erhalten, die dabei helfen, effizientere und umweltfreundlichere Produktionsverfahren zu entwickeln.