Green information technologies: Superconductivity meets Spintronics

Device where the long range Josephson coupling has been demonstrated.&nbsp; Superconducting YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7 </sub>regions (yellow) are separated by a half-metal La<sub>2/3</sub>Sr<sub>1/3</sub>MnO<sub>3</sub> ferromagnet (green).

Device where the long range Josephson coupling has been demonstrated.  Superconducting YBa2Cu3O7 regions (yellow) are separated by a half-metal La2/3Sr1/3MnO3 ferromagnet (green). © Nature Materials 2021: 10.1038/s41563-021-01162-5

Superconducting coupling between two regions separated by a one micron wide ferromagnetic compound has been proved by an international team. This macroscopic quantum effect, known as Josephson effect, generates an electrical current within the ferromagnetic compound made of superconducting Cooper-pairs. Magnetic imaging of the ferromagnetic region at BESSY II has contributed to demonstrate that the spin of the electrons forming the Cooper pairs are equal. These results pave the way for low-power consumption superconducting spintronic-applications where spin-polarized currents can be protected by quantum coherence.

When two superconducting regions are separated by a strip of non-superconducting material, a special quantum effect can occur, coupling both regions: The Josephson effect. If the spacer material is a half-metal ferromagnet novel implications for spintronic applications arise. An international team has now for the first time designed a material system that exhibits an unusually long-range Josephson effect: Here, regions of superconducting YBa2Cu3O7 are separated by a region of half-metallic, ferromagnetic manganite (La2/3Sr1/3MnO3) one micron wide.

With the help of magneto-transport measurements, the researchers were able to demonstrate the presence of a supercurrent circulating through the manganite – this supercurrent is arising from the superconducting coupling between both superconducting regions, and thus a manifestation of a Josephson effect with a macroscopic long range.

Extremely rare: Triplett superconductivity

In addition, the scientists explored another interesting property with profound consequences for spintronic applications. In superconductors electrons pair together in so-called Cooper pairs. In the vast majority of superconducting materials these pairs are composed by electrons with opposite spin in order to minimise the magnetic exchange field which is detrimental for the stabilisation of superconductivity. The ferromagnet used by the international team has been a half-ferromagnet for which only one spin type electron is allowed to circulate. The fact that a supercurrent has been detected within this material, implies that the Cooper pairs of this supercurrent must be composed by electrons having the same spin. This so-called “triplet” superconductivity is extremely rare.

Mapping magnetic domains at BESSY II

"At the XMCD-PEEM station at BESSY II, we mapped and measured the magnetic domains within the manganite spacer. We observed wide regions homogeneously magnetised and connecting the superconducting regions. Triplet spin pairs can propagate freely in these,” explains Dr. Sergio Valencia Molina, HZB physicist, who supervised the measurements at BESSY II. 

Superconducting currents flow without resistance which make them very appealing for low-power consumption applications. In the present case this current is made of electrons with equal spins. Such spin polarised currents could be used in novel superconducting spintronic applications for the transport (over long distances) and reading/writing of information while profiting from the stability imposed by the macroscopic quantum coherence of the Josephson effect.

The new device made of the superconducting and ferromagnetic components therefore opens up opportunities for superconducting spintronics and new perspectives for quantum computing.

Cooperations:

The department of Spin and Topology in Quantum Materials at HZB has participated in this international collaboration (Spain, France, USA, Russia and Germany) led by Prof. Jacobo Santamaria from the Complutense University of Madrid (Spain) and Javier Villegas from the 2Unité Mixte de Physique CNRS/THALES (France). 

Funding: To2Dox, ERA-NET, EU Horizon 2020

red.

  • Copy link

You might also be interested in

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.