Öffnet in neuem Fenster Opens in a new window Öffnet externe Seite Opens an external site Öffnet externe Seite in neuem Fenster Opens an external site in a new window

Department Spin and Topology in Quantum Materials

Instrumentation and contact information

Photoemission electron microscopy


Magnetic nanostructures are at the heart of modern data storage technology. Typical dimensions of magnetic bits are in the sub-100nm region. In addition novel magnetoelectronics devices such as magnetic random access memory junctions are operated on the sub-100nm m scale. An understanding magnetic properties of such low-dimensional structures is only accessible to spectro-microscopy tools capable of appropriate lateral resolution. This goal is achieved by combining a novel spin-resolved photoemission microscope (SPEEM) with a dedicated microfocus PGM beamline with full x-ray polarization control (UE49-PGM).

The synergy between the microscopy capabilities of the PEEM and the polarization control of synchrotron radiation makes of X-PEEM the ideal tool for space resolved and element selective investigation of nanostructures by means of chemical maps (XAS) and  magnetic imaging (XMCD and XLD).

The recent upgrade of the microscope allows for magnetic and spectroscopic imaging in a wide temperature range (60 K to 600 K) under applied magnetic and/or electric fields. For more information visit the following link XPEEM

Angle resolved photoemission spectroscopy


enlarged view

1 squared chamber

13 ARPES

This experiment is built in a collaborative effort by the IFW Dresden, TU Dresden and the HZB, to enable experiments that require the highest energy resolution at ultimately low sample temperatures. To achieve this goal, all contributions to experimental broadening ---the resolution of both the excitation source and the electron energy analyzer as well as the sample temperature--- have been reduced to ≤1 meV or their equivalent, yielding the name of the station: 1 meV x 1 meV x 1 K = 13.

12 ARPES

The 1 squared ARPES system is aimed at a much wider spectrum of angle-resolved photoemission experiments than its 1 cubed sibling. The system is equipped with a manipulator with 6 degrees-of-freedom (the IFW Dresden designed Cryoax 6) that allows for a much broader exploration of reciprocal space. In addition, the system has versatile sample handling and preparation facilities.

PHOENEX

Phoenex is a movable system for spin-resolved ARPES. It features a Specs Phoibos 150 electron energy analyzer equipped with a Mott detector for 2 channel (in-plane) spin detection. It has an additional array of 6 channeltrons for spin-integrated detection. The system is equipped with a 5-axis manipulator (translation + polar and azimuthal rotation) and has built-in magnetization coils. PHOENEX is most commonly used at the UE112-PGM1 and U125/2-SGM beamlines.

Contact information

BeamlineContact
GELEM DipoleGerman-Eastern European Laboratory for Energy and Materials Research DipoleAnna Makarova
PM2-VEKMAGVektor MagnetFlorin Radu
Victor Ukleev
U125_PGMU125_PGM Undulator beamlineOliver Rader
UE49_PGM SPEEMUE49 SPEEMFlorian Kronast
Sergio Valencia Molina
UE112_PGM-2a-1^2UE112_PGM-2a-1^2Andrei Varykhalov
UE112_PGM-2b-1^3UE112_PGM-2b-1^3Emile Rienks
Alexander Fedorov
StationContact
ALICE IIUpgraded diffractometer/reflectometer for resonant magnetic x-ray scattering applicationsFlorin Radu
Radu-Marius Abrudan
ARPES One-Cube1^3-ARPES ultra high resolution photoemission stationEmile Rienks
Alexander Fedorov
ARPES One-Square1^2 ARPES ultra high resolution photoemission stationAndrei Varykhalov
GELEM-PEEMPEEM operated by the German-Eastern European Laboratory for Energy and Materials ResearchDmitry Marchenko
SPEEMPhotoemission Electron Microscope at UE49-PGMFlorian Kronast
Sergio Valencia Molina
Mohamad-Assaad Mawass
spin-ARPESspin-ARPES at U125_PGM Jaime Sánchez-Barriga
VEKMAGVEKMAGFlorin Radu
Chen Luo
Victor Ukleev