Öffnet in neuem Fenster Opens in a new window Öffnet externe Seite Opens an external site Öffnet externe Seite in neuem Fenster Opens an external site in a new window

Department Spin and Topology in Quantum Materials

News archive

    2022

  • New road towards spin-polarised currents
    Science Highlight
    08.09.2022
    New road towards spin-polarised currents
    The transition metal dichalcogenide (TMD) series are a family of promising candidate materials for spintronics. A study at lightsource BESSY II has unveiled that in one of those materials even simple linear polarised light is sufficient to selectively manipulate spins of different orientations. This result provides an entirely new route for the generation of spin-polarised currents and is a milestone for the development of spintronic and opto-spintronic devices.
  • Humboldt Fellow Alexander Gray comes to HZB
    News
    12.08.2022
    Humboldt Fellow Alexander Gray comes to HZB
    Alexander Gray from Temple University in Philadelphia, USA, is working with HZB physicist Florian Kronast to investigate novel 2D quantum materials at BESSY II. With the fellowship from the Alexander von Humboldt Foundation, he can now deepen this cooperation. At BESSY II, he wants to further develop depth-resolved X-ray microscopic and spectroscopic methods in order to investigate 2D quantum materials and devices for new information technologies even more thoroughly.
  • Buckyballs on gold are less exotic than graphene
    Science Highlight
    21.07.2022
    Buckyballs on gold are less exotic than graphene
    C60 molecules on a gold substrate appear more complex than their graphene counterparts, but have much more ordinary electronic properties. This is now shown by measurements with ARPES at BESSY II and detailed calculations.
  • Spintronics: Giant Rashba semiconductors show unconventional dynamics with potential applications
    Science Highlight
    06.07.2022
    Spintronics: Giant Rashba semiconductors show unconventional dynamics with potential applications
    Germanium telluride is a strong candidate for use in functional spintronic devices due to its giant Rashba-effect. Now, scientists at HZB have discovered another intriguing phenomenon in GeTe by studying the electronic response to thermal excitation of the samples. To their surprise, the subsequent relaxation proceeded fundamentally different to that of conventional semimetals. By delicately controlling the fine details of the underlying electronic structure, new functionalities of this class of materials could be conceived. 

  • Perovskite solar cells: Properties still remain enigmatic
    Science Highlight
    02.05.2022
    Perovskite solar cells: Properties still remain enigmatic
    In order to explain the particularly favourable properties of perovskite semiconductors for solar cells, various hypotheses are circulating. Polarons or a giant Rashba effect, for example, are thought to play a major role. A team at BESSY II has now experimentally disproved these hypotheses. In doing so, they further narrow down the possible causes for the transport properties and enable better approaches for the targeted optimisation of this class of materials.
  • Fermi Arcs in an Antiferromagnet detected at BESSY II
    Science Highlight
    23.03.2022
    Fermi Arcs in an Antiferromagnet detected at BESSY II
    An international cooperation has analysed samples of NdBi crystals which display interesting magnetic properties. In their experiments including measurements at BESSY II they could find evidence for so called Fermi arcs in the antiferromagnetic state of the sample at low temperatures. This observation is not yet explained by existing theoretical ideas and opens up exciting possibilities to make use of these kind of materials for innovative information technologies based on the electron spin rather than the charge.
  • 2021

  • Green information technologies: Superconductivity meets Spintronics
    Science Highlight
    02.12.2021
    Green information technologies: Superconductivity meets Spintronics
    Superconducting coupling between two regions separated by a one micron wide ferromagnetic compound has been proved by an international team. This macroscopic quantum effect, known as Josephson effect, generates an electrical current within the ferromagnetic compound made of superconducting Cooper-pairs. Magnetic imaging of the ferromagnetic region at BESSY II has contributed to demonstrate that the spin of the electrons forming the Cooper pairs are equal. These results pave the way for low-power consumption superconducting spintronic-applications where spin-polarized currents can be protected by quantum coherence.

  • Spintronics: Exotic ferromagnetic order in two-dimensions
    Science Highlight
    29.10.2021
    Spintronics: Exotic ferromagnetic order in two-dimensions
    An international team has detected at HZB's vector magnet facility VEKMAG an unusual ferromagnetic property in a two-dimensional system, known as “easy-plane anisotropy”. This could foster new energy efficient information technologies based on spintronics for data storage, among other things. The team has published its results in the renowned journal Science.

  • Future information technologies: Topological materials for ultrafast spintronics
    Science Highlight
    16.07.2021
    Future information technologies: Topological materials for ultrafast spintronics
    A team led by HZB physicist Dr. Jaime Sánchez-Barriga has gained new insights into the ultrafast response of topological states of matter to femtosecond laser excitation. Using time- and spin-resolved methods at BESSY II, the physicists explored how, after optical excitation, the complex interplay in the behavior of excited electrons in the bulk and on the surface results in unusual spin dynamics. The work is an important step on the way to spintronic devices based on topological materials for ultrafast information processing.

  • 2019

  • Topological materials for information technology offer lossless transmission of signals
    Science Highlight
    18.12.2019
    Topological materials for information technology offer lossless transmission of signals
    New experiments with magnetically doped topological insulators at BESSY II have revealed possible ways of lossless signal transmission that involve a surprising self-organisation phenomenon. In the future, it might be possible to develop materials that display this phenomenon at room temperature and can be used as processing units in a quantum computer, for example. The study has been published in the renowned journal Nature.
  • Dynamic pattern of Skyrmions observed
    Science Highlight
    15.10.2019
    Dynamic pattern of Skyrmions observed
    Tiny magnetic vortices known as skyrmions form in certain magnetic materials, such as Cu2OSeO3. These skyrmions can be controlled by low-level electrical currents – which could facilitate more energy-efficient data processing. Now a team has succeeded in developing a new technique at the VEKMAG station of BESSY II for precisely measuring these vortices and observing their three different predicted characteristic oscillation modes (Eigen modes).
  • Spintronics by “straintronics”: Superferromagnetism with electric-field induced strain
    Science Highlight
    14.02.2019
    Spintronics by “straintronics”: Superferromagnetism with electric-field induced strain
    Data storage in today’s magnetic media is very energy consuming. Combination of novel materials and the coupling between their properties could reduce the energy needed to control magnetic memories thus contributing to a smaller carbon footprint of the IT sector. Now an international team led by HZB has observed at the HZB lightsource BESSY II a new phenomenon in iron nanograins: whereas normally the magnetic moments of the iron grains are disordered with respect each other at room temperature, this can be changed by applying an electric field: This field induces locally a strain on the system leading to the formation of a so-called superferromagnetic ordered state.