University of Kassel and HZB establish Joint Lab for the use of artificial intelligence

View into the experimental hall of the electron accelerator BESSY II at Helmholtz-Zentrum Berlin. Researchers carry out experiments at approximately 50 beamlines. The aim of the cooperation between the University of Kassel and the HZB is to use artificial intelligence to evaluate these data more efficiently.

View into the experimental hall of the electron accelerator BESSY II at Helmholtz-Zentrum Berlin. Researchers carry out experiments at approximately 50 beamlines. The aim of the cooperation between the University of Kassel and the HZB is to use artificial intelligence to evaluate these data more efficiently. © HZB/M. Setzpfand

The University of Kassel and Helmholtz-Zentrum Berlin are setting up a joint laboratory for the use of artificial intelligence, where they will be developing new experimental methods and improving the analysis of data from experiments performed at BESSY II.

Every year, nearly 3000 user groups from around the world visit the electron storage ring BESSY II to study an immense variety of materials using the brilliant X-ray light the ring generates. “In the research of current scientific problems, at BESSY II for example, so much data accumulates that it can barely be analysed using conventional analytical programs. In the Joint Lab, we will be developing and employing methods of artificial intelligence to do this analysis. These methods should even allow us to think up entirely new test scenarios in other scientific and technical areas that have always seemed beyond our analytical capabilities in the past,” says Prof. Dr. Arno Ehresmann, the vice president of the University of Kassel, who is also responsible for research funding.

HZB and the University of Kassel recently signed a joint cooperation agreement to set up the Joint Lab Artificial Intelligence Methods for Experiment Design (AIM-ED). A Joint Lab is a medium- to long-term form of cooperation established between the Helmholtz Association and universities. “We are pleased to be able to combine the expertise in artificial intelligence of the University of Kassel and Helmholtz-Zentrum Berlin in this way, for working on groundbreaking solutions together,” says Prof. Ehresmann.

One institute involved in the Joint Lab is the Kassel Research Center for Information System Design (ITeG). “There will also be several particularly strong research groups from the physics department working on the application of AI methods for the design, analysis or optimisation of experiments, including within a DFG Special Research Area,” Prof. Ehresmann says. The Intelligent Embedded Systems Group will also be involved, under the direction of Prof. Dr. Bernhard Sick, who has long been working intensively in the field of machine learning and artificial intelligence.

There are many synergies arising from the newly founded Joint Lab, emphasises Dr. Gregor Hartmann, a supervising researcher at Helmholtz-Zentrum Berlin. “The experiments at BESSY II generate immense amounts of data, where not only the volume of the data but also the complexity and understanding of their creation are decisive for good analysis.” HZB has great expertise in beamline development, and Prof. Ehresmann’s workgroup is contributing its expertise in detectors from the perspective of a long-term BESSY II user. The broad range of artificial intelligence methods covered by Prof. Bernhard Sick’s team will allow the best possible analysis of data. “I am very much looking forward to the intensive and exciting cooperation in this Joint Lab,” says Hartmann.

(Uni Kassel/sz)

  • Copy link

You might also be interested in

  • Langbeinites show talents as 3D quantum spin liquids
    Science Highlight
    23.08.2024
    Langbeinites show talents as 3D quantum spin liquids
    A 3D quantum spin liquid has been discovered in the vicinity of a member of the langbeinite family. The material's specific crystalline structure and the resulting magnetic interactions induce an unusual behaviour that can be traced back to an island of liquidity. An international team has made this discovery with experiments at the ISIS neutron source and theoretical modelling on a nickel-langbeinite sample.
  • Green hydrogen from direct seawater electrolysis- experts warn against hype
    News
    29.07.2024
    Green hydrogen from direct seawater electrolysis- experts warn against hype
    At first glance, the plan sounds compelling: invent and develop future electrolysers capable of producing hydrogen directly from unpurified seawater. But a closer look reveals that such direct seawater electrolysers would require years of high-end research. And what is more: DSE electrolyzers are not even necessary - a simple desalination process is sufficient to prepare seawater for conventional electrolyzers. In a commentary in Joule, international experts compare the costs and benefits of the different approaches and come to a clear recommendation.
  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.