A new cooling tower flying to BESSY's roof

The truck transporting the crane arrives early on Wednesday, September 2. Grey clouds over Adlershof, but that doesn't stop the team from setting up the crane.

The truck transporting the crane arrives early on Wednesday, September 2. Grey clouds over Adlershof, but that doesn't stop the team from setting up the crane.

The crane is installed directly in front of the truck sluice of the storage ring hall.

The crane is installed directly in front of the truck sluice of the storage ring hall.

The puzzle begins, the swivel arm (blue) is over 90m long.

The puzzle begins, the swivel arm (blue) is over 90m long.

The crane weighs 96 tons, plus additional 90 tons counterweight (see picture). The cooling tower itself weighs 2 tons.

The crane weighs 96 tons, plus additional 90 tons counterweight (see picture). The cooling tower itself weighs 2 tons.

Now all is ready and waiting for the mission to start on Thursday 3rd September.

Now all is ready and waiting for the mission to start on Thursday 3rd September.

Warming up : the frame on which the cooling tower will later stand is lifted onto the roof. It is Thursday before nine o'clock, the sky is blue, the sun is shining!

Warming up : the frame on which the cooling tower will later stand is lifted onto the roof. It is Thursday before nine o'clock, the sky is blue, the sun is shining!

Even from the Ruska Ufer it can not be overlooked: there is something happening at BESSY II. Such a voluminous crane is used at HZB for the first time.

Even from the Ruska Ufer it can not be overlooked: there is something happening at BESSY II. Such a voluminous crane is used at HZB for the first time.

</p> <p>After a few final touches, the time has come: around 9:30 am the cooling tower is lifted into the air.

After a few final touches, the time has come: around 9:30 am the cooling tower is lifted into the air.

For the admirative observers it goes almost too fast. The cooling tower flies...

For the admirative observers it goes almost too fast. The cooling tower flies...

...and floats towards the BESSY II courtyard, over the green roof.

...and floats towards the BESSY II courtyard, over the green roof.

Straight as a die it goes towards the installation lot.

Straight as a die it goes towards the installation lot.

The installation team is already waiting there, now the precision work continues. Around 10:15 a.m. the cooling tower is in its designated place.

The installation team is already waiting there, now the precision work continues. Around 10:15 a.m. the cooling tower is in its designated place.

Let me introduce you to BESSY's fourth cooling tower!

Let me introduce you to BESSY's fourth cooling tower!

Here a little sneak peak into the inside of the cooling tower.

Here a little sneak peak into the inside of the cooling tower.

Soon after the "exciting part" is over and the team starts dismantling again the crane. The parts are carefully disassembled and wait next to BESSY II for their next mission.

Soon after the "exciting part" is over and the team starts dismantling again the crane. The parts are carefully disassembled and wait next to BESSY II for their next mission.

Early September a huge crane near BESSY II could be seen from afar. A series of pictures for you to discover the exciting installation of the fourth cooling tower.

"We have been planning this for more than a year," explains Christian Jung, who is coordinating the work with Ingo Müller during the shutdown of the electron storage ring BESSY II.
Both watch with great interest as the twelve specialists assemble the crane, attach the cooling tower, then swing it over the roof and finally install it. Both are certain that the transport of the fourth cooling tower works only with detailed planning and a great deal of precision. "We have never needed such a large crane before," says Ingo Müller. Some HZB colleagues come by, pull out cell phones and capture these moments: you don't see something like that every day.
The installation of the fourth cooling tower, which is now safely located in the courtyard in the middle of the ring building, is one of the biggest jobs during the shutdown.

Read more about the shutdown period: The shutdown at BESSY II: busy activity in the ring

Pictures: Christian Feiler, Ingo Müller and Florentine Krawatzek.


fk


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.