Spintronics: Resetting the future of Heat Assisted Magnetic Recording

The nanostructured membrane has a honeycomb pattern with nanoholes of 68 nm in diameter. The nanoholes pin down the magnetic domains.

The nanostructured membrane has a honeycomb pattern with nanoholes of 68 nm in diameter. The nanoholes pin down the magnetic domains. © HZB

A thin film of Dysprosium-Cobalt (green) has been sputtered on top of the membrane, resulting in an array of antidots. The magnetic moments of DyCo<sub>5</sub> are perpendicular to the plane and stable against external magnetic fields. A laser pulse can be used to locally increase the temperature of individual bits.

A thin film of Dysprosium-Cobalt (green) has been sputtered on top of the membrane, resulting in an array of antidots. The magnetic moments of DyCo5 are perpendicular to the plane and stable against external magnetic fields. A laser pulse can be used to locally increase the temperature of individual bits. © HZB

Moderate heating up to 80 &deg;Celsius does tilt the magnetic moment associated to a single bit into the plane. Upon cooling to room temperature, the magnetic moment stays in plane, until it is overwritten by a magnetic writing head.

Moderate heating up to 80 °Celsius does tilt the magnetic moment associated to a single bit into the plane. Upon cooling to room temperature, the magnetic moment stays in plane, until it is overwritten by a magnetic writing head. © HZB

A HZB team has examined thin films of Dysprosium-Cobalt sputtered onto a nanostructured membrane at BESSY II. They showed that new patterns of magnetization could be written in a quick and easy manner after warming the sample to only 80 °Celsius, which is a much lower temperature as compared to conventional Heat Assisted Magnetic Recording systems. This paves the way to fast and energy efficient ultrahigh density data storage. The results are published now in the new journal Physical Review Applied.

To increase data density further in storage media, materials systems with stable magnetic domains on the nanoscale are needed. For overwriting a specific nanoscopic region with new information, a laser is used to heat locally the bit close to the so called Curie-Temperature, typically several hundred degrees Celsius. Upon cooling, the magnetic domain in this region can be reoriented in a small external magnetic field, known as Heat Assisted Magnetic Recording (HAMR). In industry, Iron-Platinum materials are currently used as magnetic media for the development of such HAMR-data storage devices.

Magnetic signals mapped at BESSY II before and after heating

A HZB team has now examined a new storage media system of Dysprosium and Cobalt, which shows key advantages with respect to conventional HAMR materials: A much lower writing temperature, a higher stability of the magnetic bits, and a versatile control of the spin orientation within individual magnetic bits. They achieved this by sputtering a thin film of Dysprosium and Cobalt onto a nanostructured membrane. The membrane was produced by scientific cooperation partners at the Institute of Materials Science of Madrid. The system shows a honeycomb antidot pattern with distances of 105 nanometers between nanoholes, which are 68 nanometers in diameter. These nanoholes act themselves as pinning centers for stabilizing magnetic wall displacements. The magnetic moments of DyCo5 are perpendicular to the plane and stable against external magnetic fields.

Energy efficient process

HZB-physicist Dr. Jaime Sánchez-Barriga and his team could demonstrate that warming the system to only 80 degrees Celsius is sufficient to tilt the magnetic moments in the DyCo5 film parallel to the surface plane. With measurements at the PEEM and XMCD instruments at BESSY II they could map precisely the magnetic signals before, during and after warming. After cooling to room temperature it is then easy to reorient the magnetic domains with a writing head and to encode new information. “This process in DyCo5 is energy efficient and very fast”, states Dr. Florin Radu, co-author of the study. “Our results show that there are alternative candidates for ultrahigh density HAMR storage systems, which need less energy and promise other important advantages as well”, adds Sánchez-Barriga.

Publication: Ferrimagnetic DyCo5 nanostructures for bits in heat-assisted magnetic recording.  A. A. Ünal, S. Valencia, F.  Radu, D. Marchenko, K. J. Merazzo, M. Vázquez, and J. Sánchez-Barriga, Phys. Rev. Applied 5, 064007
Doi: http://dx.doi.org/10.1103/PhysRevApplied.5.064007

arö


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.