BESSY II launches New Filling Pattern in User Mode

The new filling pattern consists of a Hybrid (or Camshaft) bunch at 4 mA (Chopper) in the center of the 200 ns wide ion clearing gap followed by the so-called PPRE-bunch of variable transverse excitation at 3 mA and 84 ns later. Together with the usual multibunch filling and the 3 slicing bunches on top of the multibunch train, now 302 out of 400 possible buckets in the storage ring are filled and topped up.

The new filling pattern consists of a Hybrid (or Camshaft) bunch at 4 mA (Chopper) in the center of the 200 ns wide ion clearing gap followed by the so-called PPRE-bunch of variable transverse excitation at 3 mA and 84 ns later. Together with the usual multibunch filling and the 3 slicing bunches on top of the multibunch train, now 302 out of 400 possible buckets in the storage ring are filled and topped up. © HZB

Since July 2015 BESSY II has been providing a new bunch filling pattern in Top-Up mode. It will open new opportunities especially for research teams dealing with time-resolved x-ray experiments. It is of significant importance for us and the community anticipating BESSY VSR.

Apart from ultrafast experiments at the Femtoslicing facility (slicing bunches) and x-ray pump-probe applications with the hybrid (or camshaft) bunch, now also time-of-flight experiments with the ARTOF and other instruments that use the pulse selection of the MHz-Chopper [1]  can be carried out in normal mode.

The new additional bunch in the dark gap arriving 84 ns after the chopper bunch can be transversally excited to support time-resolved Photoelectron- and X-ray spectroscopy based on the PPRE-technique [2]. Having such time-resolved methods at hand in the regular usermode we are even now able to take a glimpse into future operation modes at BESSY VSR.

red.

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.