BESSY II bietet neues Füllmuster

Das neue Füllmuster besteht aus einem Hybridbunch mit 4 mA (Chopper) in der Mitte der 200 ns Lücke, einem Bunch 84 ns später bei 3 mA mit variabler transversaler resonanter Anregung (PPRE), einer Multibunchfüllung sowie drei Slicing-Bunchen, die der Multibunchfüllung aufgeprägt sind. Damit werden insgesamt 302 von 400 möglichen Bunchen im Elektronenspeicherring gefüllt.

Das neue Füllmuster besteht aus einem Hybridbunch mit 4 mA (Chopper) in der Mitte der 200 ns Lücke, einem Bunch 84 ns später bei 3 mA mit variabler transversaler resonanter Anregung (PPRE), einer Multibunchfüllung sowie drei Slicing-Bunchen, die der Multibunchfüllung aufgeprägt sind. Damit werden insgesamt 302 von 400 möglichen Bunchen im Elektronenspeicherring gefüllt. © HZB

Seit Juli 2015 stellt BESSY II ein neues Standardfüllmuster bereit. Es eröffnet den Nutzerteams neue Möglichkeiten für zeitaufgelöste Experimente, ohne Einschränkung des bisher bewährten Angebots. Mittelfristig bereitet das neue Füllmuster das Zukunftsprojekt BESSY-VSR vor, mit dem variable Pulslängen hoher Intensität erreicht werden sollen.

Unterstützt werden neben ultraschnellen Experimenten beim Femtoslicing (Slicing-bunche) und Röntgen-Pump-Probe Anwendungen mit dem Hybridbunch nun zusätzlich auch Flugzeitspektroskopie mit dem ArToF bei Einzelbunchselektion mit dem MHz-Chopper [1]. Der neue zusätzliche Bunch (PPRE) in der Lücke, der auf Anfrage resonant angeregt wird, erlaubt nun auch zeitaufgelöste Photoelektronen- und Röntgenspektroskopie unter Verwendung der PPRE-Technik [2].

Mit dem Dauerbetrieb dieser zeitaufgelösten Methoden bietet das HZB bei BESSY II bereits jetzt neue Ansätze für den künftigen Speicherringbetrieb bei BESSY-VSR.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.