BESSY II changes over to solid state RF amplifiers

One of the new solid state transmitters: the power supplies are located in the left rack (black), the RF section is located behind the grey doors in the middle and in the right rack the control units can be seen.

One of the new solid state transmitters: the power supplies are located in the left rack (black), the RF section is located behind the grey doors in the middle and in the right rack the control units can be seen. © HZB

BESSY II storage ring has four cavity resonators that are excited with high-power oscillating electromagnetic fields to compensate for the energy lost by the electron beam. Four Klystrons, as they are called (large high-power linear RF vacuum tubes), have provided extremely pure 500-MHz RF power for exciting these cavity resonators up to now. But there are no replacement klystrons available on the market. Wolfgang Anders and his team at the HZB’s Institute SRF – Science and Technology have therefore used the shutdown to replace two of the klystrons with modern solid-state RF amplifiers. The other klystrons are to be replaced until the end of the year.

“This technology was first developed and employed at the SOLEIL synchrotron in France. However, SOLEIL operates with an excitation frequency of 350 MHz. By comparison, we work with a frequency of 500 MHz like most synchrotron light sources. We had to develop a new design for that reason. The development and manufacture of the RF amplifiers was carried out by a German company named Cryoelectra. We're the first photon source with this technology to have reached an excitation power of 75 kilowatts per amplifier for 500 MHz”, explains Anders.

While the vacuum-tube klystrons required a supply voltage of 26 kilovolts, the solid-state semiconductor RF amplifiers operate at just 50 Volts, but require much higher current. The energy saved is a big advantage. This is because klystron vacuum-tube RF amplifiers constantly draw full power from the mains, whereas the semiconductor RF amplifiers’ current draw is demand-follow and they only pull as much power from their mains connection as needed to compensate for the electron beam energy losses. In addition, the new RF units produce much less RF-noise, because the cavity resonators are excited more purely, which in turn improves the beam quality.

“My team has been working on implementing the new technology at BESSY II for three years. Just the extensive programming for connecting up to the control system interface and performing the signal processing for the solid-state amplifiers took a year for the engineer we hired specially for this. Now we have a very robust solution that is probably of interest to other synchrotron light sources as well”, says Anders.

arö


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.