BESSY II stellt auf Halbleiter-Hochfrequenzsender um

Der neue Halbleitersender:  die Netzteilsektion befindet sich im linken Schrank (schwarz) und die drei HF-Einheiten stecken hinter den hellgrauen Schranktüren. Im rechten Rack ist die Steuerung untergebracht.

Der neue Halbleitersender: die Netzteilsektion befindet sich im linken Schrank (schwarz) und die drei HF-Einheiten stecken hinter den hellgrauen Schranktüren. Im rechten Rack ist die Steuerung untergebracht. © HZB

BESSY II besitzt vier Kavitäten, die mit einem elektromagnetischen Wechselfeld hoher Leistung angeregt werden, um die Energieverluste des Elektronenstrahls auszugleichen. Bislang sorgten so genannte Klystron-Röhrensender für die Anregung der Kavitäten mit möglichst sauberen 500 Megahertz. Doch inzwischen gibt es kaum noch Ersatzteile für solche Röhrensender.  Ein HZB-Team hat daher den Shutdown genutzt, um zwei Klystron-Röhrensender durch moderne Halbleiter-Sender auszutauschen. Die restlichen  Klystron-Röhrensender sollen bis Ende des Jahres ausgetauscht werden.

„Diese Technik ist zuerst am Synchrotron SOLEIL, Frankreich, entwickelt und eingesetzt worden. SOLEIL arbeitet jedoch mit Anregungsfrequenzen von 350 Megahertz. Wir dagegen arbeiten wie die meisten Synchrotronlichtquellen mit Frequenzen von 500 Megahertz. Dafür mussten wir das Konzept neu entwickeln. Die Entwicklung und Fertigung der Senderendstufen wurden von einer deutschen Firma  (Cryoelectra) übernommen. Wir sind jetzt die erste Photonenquelle, die mit dieser Technik bei 500 Megahertz eine Anregungsleistung von 75 Kilowatt pro Sender erreicht“, erklärt Dr. Wolfgang Anders vom Institut SRF - Wissenschaft und Technologie.

Während die Klystron-Röhrensender Versorgungspannungen von 26 Kilovolt erforderten, arbeiten die Halbleitersender bei nur 50 Volt, benötigen aber höhere Stromstärken. Ein großer Vorteil ist die Energieeinsparung: Denn die Klystron-Röhrensender ziehen stets volle Leistung aus dem Netz, die Halbleiter-Sender regeln dies dagegen bedarfsgerecht und entnehmen dem Stromanschluss nur so viel Leistung wie der Elektronenstrahl abfordert, um Energieverluste auszugleichen. Außerdem haben die neuen Sender ein deutlich reduziertes Rauschen: die Kavität wird viel sauberer angeregt, was wiederum die Strahlqualität verbessert.

„Mein Team arbeitet seit drei Jahren daran, die neue Technik an BESSY II zu implementieren. Allein ein Jahr hat die umfangreiche Programmierung der Kontrollsystemanbindung und Signalverarbeitung der Solid-State Amplifier durch einen neu eingestellten Ingenieur gedauert. Nun besitzen wir eine sehr robuste Lösung, die vermutlich auch für andere Synchrotronlichtquellen interessant ist“, sagt Wolfgang Anders.

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.

  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.