Dancing BESSY-VSR

Paul Goslawski from Godehard Wüstefeld's team was the initiator of this project: Why not demonstrate in vivid form, what the future project BESSY-VSR is all about? With novel cavities to be introduced in synchrotron storage ring BESSY II, the new BESSY-VSR is supposed to compress some of the stored electron buckets. So it is possible to produce brilliant light pulses with variable length: short and long pulses in one ring. The user is able to choose what kind of pulse he needs for his experiment. But the team still has to solve some tricky problems.

Two short movies are now produced to show how BESSY-VSR works and what remains to be solved: The principle as well as the difficulties are now being performed with a dance!

To realize his project, Paul quickly found enthusiastic volunteers: 24 colleagues took part, among them two heads of institutes. Most of them danced in a circle (the storage ring) as "electron buckets", while the "cavities" provided some drive to the system. With the help of a few more colleagues, the shooting of the videos itself only took one afternoon, whereas Paul spent some weekends editing the final film.

But it was worth the effort! Now, the two short films are available in the HZB media centre and on youtube, both in german and english language. "They could even be of good use in presentations", Paul says. Because only motion pictures can illustrate complex physics in an easy way.    

arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.