HZB-Team tanzt BESSY-VSR

Die Idee kam von Paul Goslawski aus dem Team um Godehard Wüstefeld: Warum nicht einmal ganz anschaulich erklären, worum es bei dem Zukunftsprojekt BESSY-VSR genau geht? Mit neuartigen Einbauten im Speicherring BESSY II, sogenannten Kavitäten sollen einige der gespeicherten Elektronenpakete stark komprimiert werden. Damit gelingt es, neben langen Lichtpulsen auch brillante kurze Lichtpulse zu erzeugen. Variabel in einem Speicherring. Die Nutzer können dann wählen, welche Art von Lichtpuls sie für ihr Experiment gerade benötigen. Doch bis es soweit ist, muss das Team noch knifflige Probleme lösen.

Zwei kurze Filme zeigen nun, wie BESSY-VSR im Prinzip funktioniert und woran das Team noch arbeiten muss: Sowohl das Prinzip von BESSY-VSR als auch mögliche Probleme werden jetzt „vorgetanzt“!

Dafür hat Paul Goslawski rasch Freiwillige gefunden und für seine Idee begeistert: 24 Kolleginnen und Kollegen inklusive zweier Institutsleiter haben mitgemacht. Die meisten tanzten als „Elektronenpakete“ im Kreis, während die „Kavitäten“ ordentlich Schwung ins System brachten. Die Dreharbeiten, bei denen weitere Kollegen geholfen haben, dauerten nur einen Nachmittag, für Schnitt und Vertonung hat Paul Goslawski einige Wochenenden geopfert.

Aber die Arbeit hat sich gelohnt! Nun liegen die beiden kurzen Filme in Deutsch und Englisch in der HZB-Mediathek und auf Youtube bereit. „Die kann man auch mal gut in einem Vortrag zeigen“, meint Paul. Denn in zwei Minuten komplexe Physik gut darzustellen, das gelingt nur mit bewegten Bildern.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.