“VEKMAG” at BESSY II creates 3D magnetic fields in samples

A general view of the VEKMAG end-station. The vector magnet chamber (grey) is supported by a hexapod frame. Below the magnet  one can distinguish the detector chamber (green) and  in the forward direction the deposition chamber (dark grey) is displayed. The beam quality is monitored by a diagnostic chamber (yellow) positioned in front of the magnet chamber.

A general view of the VEKMAG end-station. The vector magnet chamber (grey) is supported by a hexapod frame. Below the magnet one can distinguish the detector chamber (green) and in the forward direction the deposition chamber (dark grey) is displayed. The beam quality is monitored by a diagnostic chamber (yellow) positioned in front of the magnet chamber. © Dr. Tino Noll

Together with HZB, teams from the Universität Regensburg, from the Freie Universität Berlin and from  the  Ruhr Universität Bochum have jointly set up a unique measurement station at BESSY II: a vector electromagnet consisting of three mutually perpendicular Helmholtz coils which enables  setting the local magnetic field at the sample position  to any orientation desired. The first measurements of magnetic materials, spin systems, and nanostructured magnetic samples are scheduled for early 2015.

“We have been working on this project for almost six years”, reports HZB physicist Dr. Florin Radu. He is coordinating the project with the three universities. The deposition chamber for the samples was designed at Freie Universität Berlin. Ruhr Universität Bochum built the detector chambers, and Universität Regensburg developed the concepts for  synchrotron beam-based ferromagnetic resonance experiments.

Rapid change of polarisation

In the meantime, Radu and his team ensured optimum characteristics of a new beamline for carrying out most sophisticated experiments: “We need an extremely stable beam, but we also want to be able to change the polarisation of the x-rays  very rapidly”, he explains. “For that reason, we developed a hexapod vacuum chamber with six moveable legs supporting a mirror. By changing the leg positions slightly, we can change the orientation of the first mirror and thereby the polarisation of the x-ray beam in just seconds – about one hundred times faster than before.” The tests show that this prototype arrangement improves the signal-to-noise ratio by a factor of more than ten.

Temperature between 1,6 K and 500 K

The new experimental station will not only facilitate many different kinds of studies, particularly in the soft X-ray region, but will also permit to carry out completely new studies that require  temperatures of 500 Kelvin right down to 1.6 Kelvin and magnetic fields as high as nine tesla. Simultaneously the  X-rays can penetrate the individual atoms and excite their outer electrons, enabling magnetic properties of the individual elements to be distinguished.

The main assets of the new VEKMAG end-station are experimental specifications that are unique in comparison with stations operating at other international facilities. In particular for element-specific and time-resolved measurements of ferromagnetic and paramagnetic resonances, as well as for spectroscopic and scattering experiments VEKMAG offers a unique sample environment. However, “VEKMAG will only attain its full potential,  once HZB has implemented a new innovative beam filling pattern  with variable pulse lengths at full photon intensities”, according to Radu, because “we can then investigate rapid spin dynamics  with sub-picosecond time resolutions.”

The VEKMAG project was funded by the German Federal Ministry for Education and Research (BMBF) through a grant of about four million Euros.

arö


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.