VEKMAG-Messplatz an BESSY II

Schematische Darstellung der VEKMAG-Messstation: Der Vektormagnet befindet sich in der Vakuumkammer (grau), die in einem sechsbeinigen Ger&uuml;st aufgeh&auml;ngt ist. Unterhalb des Magneten liegt die Detektorkammer (gr&uuml;n), im Bildvordergrund ist die Depositionskammer (dunkelgrau) zu sehen. Die Strahlqualit&auml;t wird durch eine Diagnose-Einheit (goldfarbig) kontinuierlich kontrolliert. <br /><br />

Schematische Darstellung der VEKMAG-Messstation: Der Vektormagnet befindet sich in der Vakuumkammer (grau), die in einem sechsbeinigen Gerüst aufgehängt ist. Unterhalb des Magneten liegt die Detektorkammer (grün), im Bildvordergrund ist die Depositionskammer (dunkelgrau) zu sehen. Die Strahlqualität wird durch eine Diagnose-Einheit (goldfarbig) kontinuierlich kontrolliert.

© Dr. Tino Noll

Gemeinsam mit dem HZB haben Teams von der Universität Regensburg, der Freien Universität Berlin sowie der Ruhr-Universität Bochum bei BESSY II einen einzigartigen, neuen Messplatz aufgebaut: ein Vektormagnet aus drei senkrechten Helmholtz-Spulen ermöglicht es, lokal an der Probenposition beliebig orientierte Magnetfelder einzustellen. 2015 sollen erste Messungen an magnetischen Materialien, Spinsystemen und nanostrukturierten Proben durchgeführt werden.

„Seit fast sechs Jahren treiben wir dieses Projekt gemeinsam voran“, berichtet HZB-Physiker Dr. Florin Radu. Er koordiniert das Projekt mit den drei Universitäten. An der Freien Universität Berlin wurde die Wachstumskammer für die Proben entworfen. Die Ruhr-Universität Bochum baute die Detektorkammern, und die Universität Regensburg hat das Konzept für die synchrotronstrahlungsbasierte ferromagnetische Resonanz entwickelt.

Schnelle Einstellung der Polarisation

Radu und sein Team sorgten indessen für optimale Experimentierbedingungen an der Beamline: „Wir brauchen einen extrem stabilen Strahl, möchten aber auch sehr rasch die Polarisation des Lichts ändern können“, erklärt er. „Daher haben wir eine Hexapod-Vakuumkammer mit sechs beweglichen Beinen entwickelt, die einen Spiegel trägt. Durch leichte Positionsänderungen der Beine verändern wir die Orientierung des Spiegels und damit die Polarisation des Strahls, und zwar binnen Sekunden, also rund hundertmal schneller als bisher.“ Die Tests zeigen, dass diese Anordnung das Verhältnis von Signal zu Rauschen um das zehnfache verbessert.

Temperaturbereich 1,6 K - 500 K

Der neue Experimentierplatz ermöglicht vielfältige Untersuchungen, insbesondere im weichen Röntgenbereich und bei Temperaturen von 500 Kelvin bis hinab zu 1,6 Kelvin. Dabei dringen die Röntgenstrahlen in die einzelnen Atome ein und regen ihre Außenelektronen an, so dass man magnetische Eigenschaften der einzelnen Elemente unterscheiden kann.

Der neue Messplatz wird auch im internationalen Vergleich einzigartige Messbedingungen für elementspezifische und zeitaufgelöste Messungen der ferromagnetischen und paramagnetischen Resonanz sowie für Spektroskopie- und Streuexperimente bieten. „Sein volles Potenzial wird der VEKMAG aber erst dann entfalten, wenn wir an BESSY II ein neues  und innovatives Strahlkonzept mit variabler Pulslänge bei voller Photonenintensität realisiert haben“, so Radu, denn: „Damit können wir dann schnelle Umschaltprozesse von Spins mit besonders hoher Zeitauflösung untersuchen.“

Das Projekt VEKMAG wurde vom Bundesministerium für Bildung und Forschung (BMBF) mit insgesamt rund vier Mio. Euro finanziert.


arö


Das könnte Sie auch interessieren

  • Kleine Kraftpakete für ganz besonderes Licht
    Science Highlight
    27.06.2024
    Kleine Kraftpakete für ganz besonderes Licht
    Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.
  • Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Science Highlight
    24.06.2024
    Neue Methode zur Absorptionskorrektur für bessere Zahnfüllungen
    Ein Team um Dr. Ioanna Mantouvalou hat eine Methode entwickelt, um die Verteilung von chemischen Elementen in Dentalmaterialien präziser als bisher möglich darzustellen. Die konfokale mikro-Röntgenfluoreszenzanalyse (micro-XRF) liefert dreidimensional aufgelöste Elementbilder, die Verzerrungen enthalten. Sie entstehen, wenn Röntgenstrahlen Materialien unterschiedlicher Dichte und Zusammensetzung durchdringen. Mit Mikro-CT-Daten, die detaillierte 3D-Bilder der Materialstruktur liefern, und chemischen Informationen aus Röntgenabsorptionsspektroskopie (XAS) - Experimenten im Labor (BLiX, TU Berlin) und an der Synchrotronstrahlungsquelle BESSY II haben die Forschenden das Verfahren nun verbessert.
  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.