HZB part of new metal oxide/water systems CRC

A team of HZB researchers is part of the new collaborative research center, "Molecular insights into metal oxide/water systems" funded by the German Research Association. As part of this CRC, Dr. Bernd Winter of Prof. Dr. Emad Aziz's junior research group will be studying metal ions and metal oxide complexes in aqueous solution at BESSY II.

Spokesman of the CRC is Prof. Dr. Christian Limberg of the Humboldt University Berlin. Other partners include the Freie Universität Berlin, the Technical University of Berlin, Potsdam University, the Federal Institute for Materials Research and Testing Berlin, and the Fritz Haber Institute of the Max Planck Society Berlin.

The researchers are using a liquid microjet under vacuum conditions allowing them to obtain measurements of aqueous solutions using photoelectron spectroscopy at BESSY II. Their measurements allow for conclusions to be drawn on the binding energies and on electronic relaxation processes and thus provide clues as to the interaction between metal oxide complexes and the surrounding water molecules. In addition, the technique can be used to determine precursor molecules that will go on to form larger metal-oxo networks.

These insights are key to our ability to synthesize metal oxides for specific applications, which is typically done in aqueous solution. The reason being that metal oxides are highly interesting in terms of their technological applicability: they upgrade building materials and special types of glass, improve the properties of ceramic implants in medicine, and are considered interesting candidates for use in fuel cells, solar cells, microelectronics, and as novel kinds of catalysts.

Spokesman of the CRC "Molecular insights into metal oxide/water systems: Structural evolution, interface, and resolution" is Prof. Dr. Christian Limberg of the Humboldt University Berlin. Other partners include the Freie Universität Berlin, the Technical University of Berlin, Potsdam University, the Federal Institute for Materials Research and Testing Berlin, and the Fritz Haber Institute of  the Max Planck Society Berlin. Together, the participating research groups are hoping to investigate different fundamental processes relating to metal oxide interactions with water on all relevant length scales using a combination of chemical synthesis and cutting-edge experimental and theoretical methods. In late November 2013, the German Research Association established nine new collaborative research centers (CRC's), which, through mid-2017, will receive federal funding in the amount of 64.4 million Euros total.

arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.