HZB an neuem SFB zu Metalloxid-Wasser-Systemen beteiligt

Dr. Bernd Winter in der Experimentierhalle von BESSY II.  Foto: Stephan Thürmer

Dr. Bernd Winter in der Experimentierhalle von BESSY II. Foto: Stephan Thürmer

Ein Forschungsteam vom HZB ist am neuen Sonderforschungsbereich „Molekulare Einblicke in Metalloxid/Wasser-Systeme“ beteiligt, der von der Deutschen Forschungsgemeinschaft ab sofort gefördert wird. Dr. Bernd Winter von der Nachwuchsgruppe um Prof. Dr. Emad Aziz wird dabei Metallionen und Metall-Oxid-Komplexe  in wässriger Lösung an BESSY II untersuchen.

Dazu verwenden die Forscher einen flüssigen Mikrojet im Vakuum, der es erlaubt, wässrige Lösungen mittels Photoelektronen-Spektroskopie an BESSY II zu vermessen. Diese Messungen ermöglichen Rückschlüsse auf die Bindungsenergien und auf elektronische Relaxationsprozesse und geben damit Aufschluss über die Wechselwirkung der Metall-Oxid-Komplexe mit den umgebenden Wassermolekülen. Außerdem  lassen sich damit auch Vorläufermoleküle bestimmen, die der Bildung  größerer Metall-Oxo-Netzwerke vorausgehen.

Die Erkenntnisse sind wichtig, um Metalloxide gezielt für konkrete Anwendungen synthetisieren zu können, was typischerweise in wässriger Lösung erfolgt. Denn Metalloxide sind technisch extrem interessant, sie werten Baumaterialien und Spezialgläser auf, verbessern die Eigenschaften keramischer Implantate in der Medizin und sie gelten als interessante Kandidaten für Anwendungen in Brennstoffzellen, in Solarzellen und in der Mikroelektronik sowie als neuartige Katalysatoren.

Sprecher des SFB „Molekulare Einblicke in Metalloxid/Wasser-Systeme: Strukturelle Evolution, Grenzflächen und Auflösung“  ist Prof. Dr. Christian Limberg, Humboldt-Universität zu Berlin; Weitere Partner sind:  Freie Universität Berlin, Technische Universität Berlin, Universität Potsdam, Bundesanstalt für Materialforschung und -prüfung Berlin, Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin. Gemeinsam wollen die beteiligten Forschungsteams elementare Prozesse rund um die Metalloxid-Wasser-Wechselwirkungen auf allen relevanten Längenskalen mit einer Kombination aus chemischer Synthese sowie hochmodernen experimentellen und theoretischen Methoden untersuchen. Die Deutsche Forschungsgemeinschaft hat Ende November 2013 neun neue Sonderforschungsbereiche (SFB) eingerichtet, die sie bis Mitte 2017 mit insgesamt 64,4 Millionen Euro fördert.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.
  • Innovative Batterie-Elektrode aus Zinn-Schaum
    Science Highlight
    24.02.2025
    Innovative Batterie-Elektrode aus Zinn-Schaum
    Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.