• Greil, S.M.; Rappich, J.; Korte, L.; Bastide, S.: In Situ PL and SPV Monitored Charge Carrier Injection During Metal Assisted Etching of Intrinsic a-Si Layers on c-Si. ACS Applied Materials & Interfaces 7 (2015), p. 11654-11659

10.1021/acsami.5b02922

Abstract:
Although hydrogenated amorphous silicon is already widely examined regarding its structural and electronic properties, the chemical etching behavior of this material is only roughly understood. We present a detailed study of the etching properties of intrinsic hydrogenated amorphous silicon, (i)a-Si:H, layers on crystalline silicon, c-Si, within the framework of metal assisted chemical etching (MACE) using silver nanoparticles (Ag NPs). The etching processes are examined by in situ photoluminescence (PL) and in situ surface photovoltage (SPV) measurements, as these techniques allow a monitoring of the hole injection that takes place during MACE. By in situ PL measurements and SEM images, we could interpret the different stages of the MACE process of (i)a-Si:H layers and determine etch rates of (i)a-Si:H, that are found to be influenced by the size of the Ag NPs. In situ PL and in situ SPV measurements both enable researchers to determine when the Ag NPs reach the (i)a-Si:H/c-Si interface. Furthermore, a preferential MACE of (i)a-Si:H versus c-Si is revealed for the first time. This effect could be explained by an interplay of the different thermodynamic and structural properties of the two materials as well as by hole injection during MACE resulting in a field effect passivation. The presented results allow an application of the examined MACE processes for Si nanostructuring applications.