New material for efficient separation of Deuterium at elevated Temperatures

The crystal structure of Cu-ZIF-gis that shows cylindrical straight channels along the c-axis. The pores were calculated with Connolly surfaces with a probe of 1.1 Å. (Cu, orange; N, blue; C, gray; O, magenta; H, white).

The crystal structure of Cu-ZIF-gis that shows cylindrical straight channels along the c-axis. The pores were calculated with Connolly surfaces with a probe of 1.1 Å. (Cu, orange; N, blue; C, gray; O, magenta; H, white). © Minji Jung / Department of Chemistry, UNIST

A novel porous material capable of separating deuterium (D2) from hydrogen (H2) at a temperature of 120 K has been introduced. Notably, this temperature exceeds the liquefaction point of natural gas, thus facilitating large-scale industrial applications. This advancement presents an attractive pathway for the economical production of D2 by leveraging the existing infrastructure of liquefied natural gas (LNG) production pipelines. The research conducted by Ulsan National Institute of Science & Technology (UNIST), Korea, Helmholtz-Zentrum Berlin, Heinz Maier Leibnitz Zentrum (MLZ), and Soongsil University, Korea, has been published in Nature Communications.

Deuterium, a stable isotope of hydrogen, plays a critical role in enhancing the durability and luminous efficiency of semiconductors and display devices, as well as serving as a fusion fuel in energy production. However, the increasing demand for D2 presents challenges in its production, primarily due to the need to separate from hydrogen through a cryogenic distillation process conducted at temperatures as low as 20 K (-253°C). While research has explored the use of metal-organic frameworks (MOFs) for D2 separation, their efficiency diminishes significantly at elevated temperatures.

In this study, the research team presented a copper-based zeolite imidazolate framework (Cu-ZIF-gis), which shows exceptional D2 separation performance, even at 120 K (-153). While typical MOFs operate effectively at around 23 K (-250), their performance decreases sharply as temperatures approach 77 K (-196). However, the newly developed Cu-based MOF demonstrates a significant advantage in maintaining its effectiveness at higher temperatures.

For the first time, the research team identified that the superior performance of this material results from the increased expansion of its lattice as the temperature rises. At cryogenic temperatures, the pores of the developed MOF are smaller than H2 molecules, thereby inhibiting their passage. However, as the temperature increases, the lattice expands, leading to an increase in pore size. This enlargement facilitates the passage of gases through the pores, thereby enabling the separation of H2 and D2 via the quantum sieving effect, wherein heavier molecules traverse the pores more efficiently at lower temperatures.

Confirmatory in-situ X-ray diffraction (XRD) and quasi-elastic neutron scattering (QENS) experiments, conducted at the Institut Laue-Langevin (ILL) in Grenoble, France, by the joint team from UNIST, HZB and MLZ, confirmed the expansion of the lattice framework with increasing temperature, as well as the difference in isotope diffusivity even at elevated temperatures. Additionally, the analysis from the Thermal Desorption Spectroscopy (TDS) experiments indicated stable D2 separation at elevated temperatures.

Professor Oh remarked, “The reported material exhibits markedly lower energy consumption and enhanced separation efficiency compared to most traditional methods, which operate at extremely low temperatures.” Dr. Jitae Park further noted, “These findings can be applied to develop sustainable isotope separation technologies using existing LNG cryogenic infrastructure, underscoring its potential industrial impact.”

Dr. Margarita Russina highlighted the crucial role of QENS in this study, stating: "With QENS, we can directly probe the molecular motion of H2 and D2 in MOFs, gaining key insights into their diffusion behavior and interactions with porous materials. The observed stronger confinement of D2 compared to H₂, a strictly nanoscale phenomenon, leads to remarkable effects on macroscopic properties, forming the basis for the development of a new generation of materials for more efficient isotope separation."

The research team, jointly led by Professor Hyunchul Oh from the Department of Chemistry at UNIST, Professor Jaheon Kim from Soongsil University, Dr. Jitae Park from Heinz Maier Leibnitz Zentrum (MLZ) at Technical University of Munich (TUM), and Dr. Margarita Russina from Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Berlin, Germany announced this advancement on March 19, 2025. The study also involved Minji Jung, Jaewoo Park, and Raeesh Muhammad from the Department of Chemistry at UNIST, who served as co-first authors. The findings of this research have been published in Nature Communications on February 27, 2025. This study was supported by the National Research Foundation (NRF) of Korea and the Ministry of Science and ICT (MSIT), and the Institut Laue-Langevin (ILL) in Grenoble, France for the allocation of beam time.

UNIST /red.

  • Copy link

You might also be interested in

  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.
  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.