Largest magnetic anisotropy of a molecule measured at BESSY II
THz-EPR setup in the experimental hall of BESSY II. © HZB
The magnetic properties of the investigated bismuth complex (center) were investigated using THz-EPR spectroscopy at BESSY II. The method uses electromagnetic radiation from the THz to the infrared range in combination with high magnetic fields. © HZB
At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.
The research involved a bismuth complex synthesized in the group of Josep Cornella (MPI KOFO). This molecule has unique magnetic properties that a team led by Frank Neese (MPI KOFO) recently predicted in theoretical studies. So far, however, all attempts to measure the magnetic properties of the bismuth complex and thus experimentally confirm the theoretical predictions have failed.
This important step has now been achieved by using THz electron paramagnetic resonance spectroscopy (THz-EPR) at the synchrotron radiation source BESSY II, which is operated by the HZB in Berlin.
“The results show in a fascinating way that our method can be used to determine extremely high values of the magnetic anisotropy with high accuracy. Through our cooperation with scientists from fundamental research, we are thereby making a great step forward in the understanding of this class of materials,” says Tarek Al Said (HZB), first author of the study, which was recently published in the renowned Journal of the American Chemical Society.
red./arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=28886;sprache=en
- Copy link
-
Optical innovations for solar modules - which are the most promising?
In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.
-
Catalysis research with the X-ray microscope at BESSY II
Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
-
BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.