Protons against cancer: New research beamline for innovative radiotherapies
Prof. Dr Judith Reindl and PhD student Aikaterini Rousseti (from left to right) from the University of the Bundeswehr Munich present the experimental station for biological samples which is installed at the new Minibee beamline at HZB. © Kevin Fuchs / HZB
Magnetic quadrupoles focus the proton beam in front of the experiment platform. © Kevin Fuchs / HZB
Together with the University of the Bundeswehr Munich, the HZB has set up a new beamline for preclinical research. It will enable experiments on biological samples on innovative radiation therapies with protons.
The proton accelerator at the Helmholtz-Zentrum Berlin (HZB) has been used for about 25 years to combat certain types of eye tumours. So far, over 4800 people have benefited from proton eye tumour therapy, which is carried out in collaboration with Charité – Universitätsmedizin Berlin.
Now, the proton accelerator at HZB also offers the option of conducting preclinical research: A mini-beamline for preclinical experiments (Minibee) has been set up for this purpose together with the University of the Bundeswehr in Munich. The HZB's Proton Therapy Department has built the beam guidance and control system for the minibeams. The University of the Bundeswehr in Munich, with Prof. Judith Reindl from the Institute of Applied Physics and Measurement Technology and the Section of Biomedical Radiation Physics, installed a platform for image-guided irradiation of biological samples. This will enable joint experiments on radiobiology and innovative radiation therapy in the future.
‘At Minibee, we can use medical research to investigate how changes in parameters and settings of the proton beam affect the treatment,’ says Judith Reindl. Among other things, Minibee is designed to generate ultrashort proton flashes (FLASH therapy) or needle-fine radiation (beamlets). ‘Our aim is to develop new methods that effectively destroy tumours while providing even better protection for healthy tissue,’ says Prof. Dr. Andrea Denker, head of the Department of Proton Therapy at HZB.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=28606;sprache=en
- Copy link
-
Largest magnetic anisotropy of a molecule measured at BESSY II
At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.
-
Catalyst Activation and Degradation in Hydrous Iridium Oxides
The development of efficient catalysts for the Oxygen Evolution Reaction (OER) is crucial for advancing Proton Exchange Membrane (PEM) water electrolysis, with iridium-based OER catalysts showing promise despite the challenges related to their dissolution. Collaborative research by the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH and the Fritz-Haber-Institut has provided insights into the mechanisms of OER performance and iridium dissolution for amorphous hydrous iridium oxides, advancing the understanding of this critical process.
-
Less is more: Why an economical Iridium catalyst works so well
Iridium-based catalysts are needed to produce hydrogen using water electrolysis. Now, a team at HZB has shown that the newly developed P2X catalyst, which requires only a quarter of the Iridium, is as efficient and stable over time as the best commercial catalyst. Measurements at BESSY II have now revealed how the special chemical environment in the P2X catalyst during electrolysis promotes the oxygen evolution reaction during water splitting.