Perovskite solar cells: TEAM PV develops reproducibility and comparability

Perovskite materials for photovoltaic applications come in many shades, reflecting their huge variety of optical properties. This makes them uniquely fit to be combined with other materials in multijunction solar cells.

Perovskite materials for photovoltaic applications come in many shades, reflecting their huge variety of optical properties. This makes them uniquely fit to be combined with other materials in multijunction solar cells. © M. Setzpfandt/HZB

At HZB several labs are dedicated to perovskite research. Here different compositions of the material can be prepared.

At HZB several labs are dedicated to perovskite research. Here different compositions of the material can be prepared. © M. Setzpfandt/HZB

The HZB runs a testing facility in order to observe different perovskite solar cells in real life conditions.

The HZB runs a testing facility in order to observe different perovskite solar cells in real life conditions. © HZB

Ten teams at Helmholtz-Zentrum Berlin are building a long-term international alliance to converge practices and develop reproducibility and comparability in perovskite materials. The TEAM PV project is funded by the Federal Ministry of Education and Research (BMBF), Germany.

Solar energy is already the cheapest way to generate electricity in many parts of the world. But the world needs much higher efficiency solar modules to power demanding sectors such as electric vehicles, steel production, and AI. Likely the only option for increasing efficiency within the next decade is halide perovskites, a new class of materials that has been the subject of intensive research in the last decade. And while the silicon modules that dominate the market today are mainly produced in China, production facilities for halide perovskite cells could also be set up in Europe and the US, de-risking supply chains.

However, the road from the laboratory to mass production is long and there are still a number of hurdles to overcome. "The central goal is to increase the manufacturability, stability, and reliability of perovskite-based technologies. We urgently need common protocols to reliably compare diverse global developments in these novel materials and also to predict their service life," says Dr Siddhartha Garud, who drives the management of the TEAM PV project at HZB. Within this project, HZB aims to converge best practices in fabrication and analyses together with the National Renewable Energy Lab NREL, the University of Colorado Boulder and Humboldt-Universität zu Berlin.

One of the main questions is how the stability determined in a laboratory will behave under real conditions in a field. Another focus will be on machine learning methods to navigate this extremely vast class of materials and devices. The participating teams will work closely together to further develop the fabrication and analysis of perovskite thin films and full devices.

The BMBF is providing a total of €4 million in funding for the TEAM PV project for tools, personnel and researcher exchanges. "We want to establish a long-term partnership in photovoltaics with sustained researcher exchanges and also make it a starting point for further collaborations between the Helmholtz Association and National Labs and top Universities in the U.S.", Garud says.

 

 

arö

  • Copy link

You might also be interested in

  • Rutger Schlatmann re-elected as ETIP PV Chair
    News
    24.10.2024
    Rutger Schlatmann re-elected as ETIP PV Chair
    The ETIP PV Steering Committee elected a new Chair, as well as two Vice-Chairs for the term 2024 – 2026. Rutger Schlatmann, head of the division Solar Energy at the HZB, and professor at HTW Berlin, was re-elected as the ETIP PV Chair.
  • HZB patent for semiconductor characterisation goes into serial production
    News
    10.10.2024
    HZB patent for semiconductor characterisation goes into serial production
    An HZB team has developed together with Freiberg Instruments an innovative monochromator that is now being produced and marketed. The device makes it possible to quickly and continuously measure the optoelectronic properties of semiconductor materials with high precision over a broad spectral range from the near infrared to the deep ultraviolet. Stray light is efficiently suppressed. This innovation is of interest for the development of new materials and can also be used to better control industrial processes.
  • Photovoltaic living lab reaches the 100 Megawatt-hour mark
    News
    27.09.2024
    Photovoltaic living lab reaches the 100 Megawatt-hour mark
    About three years ago, the living laboratory at HZB went into operation. Since then, the photovoltaic facade has been generating electricity from sunlight. On September 27, 2024, it reached the milestone of 100 megawatt-hours.