BESSY II: Heterostructures for Spintronics

Symbolic illustration of a graphene layer on a microchip. In combination with a heavy-metal thin film and ferromagnetic monolayers, graphene could enable spintronic devices.

Symbolic illustration of a graphene layer on a microchip. In combination with a heavy-metal thin film and ferromagnetic monolayers, graphene could enable spintronic devices. © Dall-E/arö

Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.

 

Spintronics uses the spins of electrons to perform logic operations or store information. Ideally, spintronic devices could operate faster and more energy-efficiently than conventional semiconductor devices. However, it is still difficult to create and manipulate spin textures in materials.

Graphene for Spintronics

Graphene, a two-dimensional honeycomb structure build by carbon atoms, is considered an interesting candidate for spintronic applications. Graphene is typically deposited on a thin film of heavy metal. At the interface between graphene and heavy metal, a strong spin-orbit coupling develops, which gives rise to different quantum effects, including a spin-orbit splitting of energy levels (Rashba effect) and a canting in the alignment of spins (Dzyaloshinskii-Moriya interaction). Especially the spin canting effect is needed to stabilise vortex-like spin textures, known as skyrmions, which are particularly suitable for spintronics.

Plus Cobalt Monolayers

Now, however, a Spanish-German team has shown that these effects are significantly enhanced when a few monolayers of the ferromagnetic element cobalt are inserted between the graphene and the heavy metal (here: iridium). The samples were grown on insulating substrates which is a necessary prerequisite for the implementation of multifunctional spintronic devices exploiting these effects.

Interactions observed

‘At BESSY II, we have analysed the electronic structures at the interfaces between graphene, cobalt and iridium,’ says Dr. Jaime Sánchez-Barriga, a physicist at HZB. The most important finding: contrary to expectations, the graphene interacts not only with the cobalt, but also through the cobalt with the iridium. ‘The interaction between the graphene and the heavy metal iridium is mediated by the ferromagnetic cobalt layer,’ Sánchez-Barriga explains. The ferromagnetic layer enhances the splitting of the energy levels. ‘We can influence the spin-canting effect by the number of cobalt monolayers; three monolayers are best,’ says Sanchez-Barriga.

This result is supported not only by experimental data, but also by new calculations using density functional theory conducted at Forschungszentrum Jülich. The fact that both quantum effects influence and reinforce each other is new and unexpected.

SPIN-ARPES at BESSY II

‘We were only able to obtain these new insights because BESSY II offers extremely sensitive instruments for measuring photoemission with spin resolution (Spin-ARPES). This leads to the fortunate situation that we can determine the assumed origin of the spin canting, i. e., the Rashba-type spin-orbit splitting, very precisely, probably even more precisely than the spin canting itself.,’ emphasises Prof. Oliver Rader, who heads the “Spin and Topology in Quantum Materials” department at HZB. There are only a very few institutions worldwide that have instruments with these capabilities. The results show that graphene-based heterostructures have great potential for the next generation of spintronic devices.

arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.