All BESSY II instruments reconnected to the network

© HZB / D. Laubner

Thirteen months ago, HZB fell victim to a criminal cyberattack that also took BESSY II light source and the instruments in the experimental hall out of operation. BESSY II was up and running again after just three weeks and the instruments were gradually put back into operation. Now HZB can report some good news: All experimental stations are again integrated into the new IT networks and can record data.

In a task force led by Andreas Jankowiak and Jens Viefhaus, a team led by Ruslan Ovsyannikov succeeded in implementing a new IT infrastructure and a resilient network architecture. This project is now to be firmly established and perpetuated at HZB. The aim is to achieve the full functionality of the BESSY-II user service, to establish new possibilities for remote experiments and better data management.

The project also benefits from the successes of an international cooperation that is developing a new basis for experimental data management at light sources and small labs called Bluesky. With Bluesky, a new type of experimental data acquisition system is being introduced throughout BESSY II (under the leadership of HZB employees William Smith and Simone Vadilonga). It is already in operation at several BESSY beamlines. The introduction of Bluesky at BESSY II is a milestone and has attracted much attention in the scientific community. Several European accelerators are interested in the novel data control system.

HZB is also participating in the Helmholtz project ROCK-IT (Remote, Operando Controlled, Knowledge-driven, and IT-based) to meet the future challenges of data management and the IT structures of large-scale scientific research facilities. The aim is to develop all necessary tools for the automation and remote access of in-situ and operando experiments at synchrotrons. Simplified access to the experiments is a central concern of the user community.

 

 

Roland Müller (red)

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.