New Method for Absorption Correction to Improve Dental Fillings

The micro-XRF composite image for the Ca (white/tooth), Yb (magenta/filling) and Zn (red/sealer) distribution in a treated human tooth shows Zn diffusion from the sealer material into the tooth.

The micro-XRF composite image for the Ca (white/tooth), Yb (magenta/filling) and Zn (red/sealer) distribution in a treated human tooth shows Zn diffusion from the sealer material into the tooth. © Leona Bauer (TU Berlin/HZB)

A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.

 

"We can now conduct more accurate measurements," says Ioanna Mantouvalou. "The absorption correction with micro-CT and XAS takes into account how strongly different materials absorb X-rays." This has been made possible through a combination of laboratory infrastructures at BAM (Federal Institute for Materials Research and Testing) and the HZB SyncLab laboratory in combination with the BESSY II synchrotron light source. BESSY II provided tunable X-rays over a wide energy range (200 eV to 32 keV) necessary for detailed compositional analysis. The micro-CT and confocal micro-XRF investigations were then facilitated using laboratory setups that utilize X-ray tubes as sources.

One of the materials investigated by Mantouvalou's team is dentin—a mineralized tissue that makes up most of the tooth, lies beneath the enamel, and plays a crucial role in transmitting sensations such as cold and heat. Its analysis is important for dentistry because, with dental fillings, elements often diffuse from the filling material into the dentin. "Our results enable detailed studies of such diffusion processes," says Leona Bauer, a doctoral student at HZB and TU Berlin and the study's first author. They are important for improving the durability and biocompatibility of dental fillings and reducing the risk of secondary caries and other dental problems.

In addition to investigating materials for dentistry, the method offers applications in other areas where precise 3D elemental distributions are required. These include the analysis of biological tissues, the investigation of catalyst materials, and the study of materials in environmental science. The versatility of the measurement method could thus have a positive impact on various research fields.

HS

  • Copy link

You might also be interested in

  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.
  • The future of energy: recommendations from science to politics
    News
    21.03.2025
    The future of energy: recommendations from science to politics
    Experts from HZB have contributed their expertise to the position papers briefly presented here. The topics include the development of innovative materials for a sustainable energy supply and the circular economy. Experts from different areas have jointly formulated solutions and recommendations for action.