Key role of nickel ions in the Simons process discovered

Ansammlungen von Nickel-Ionen bilden einen dunklen Film auf einer Anode. 

Ansammlungen von Nickel-Ionen bilden einen dunklen Film auf einer Anode.  © BAM

Researchers at the Federal Institute for Materials Research and Testing (BAM) and Freie Universität Berlin have discovered the exact mechanism of the Simons process for the first time. The interdisciplinary research team used the BESSY II light source at the Helmholtz Zentrum Berlin for this study.

The Simons process is of great importance for the production of fluoroorganic compounds and is used in the pharmaceutical, agrochemical, plastics production and electronics industries, among others. The process is named after its inventor, the American chemist Joseph H. Simons, and utilises an electrochemical process to synthesise fluoroorganic compounds. By passing a current through an electrolyte solution containing hydrogen fluoride at an anode and a cathode, fluorine-containing ions are formed which react with other ions or molecules in the solution to form the desired fluorine-containing compounds.

Although this process has been used for over 70 years, the exact mechanism of the Simons process has so far remained a mystery. All that was known was that a black film forms on the nickel anode during the electrolysis process. In order to be able to analyse this film more precisely, the interdisciplinary research team used the synchrotron source BESSY II at the Helmholtz-Zentrum Berlin for the first time. With the help of a specially developed measuring cell, it was possible to carry out in-situ measurements on the anode, which even allowed individual atoms to be observed during electrofluorination. The investigations revealed that centres of highly valent nickel ions are formed in the black layer during the Simons process, which are crucial for the success of electrofluorination.

This discovery makes it possible to specifically improve the Simons process and make it more efficient, which is of great importance for the chemical industry.

Source: Press Release of BAM

red/sz

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.