The future of BESSY

This is what the successor source BESSY III could look like in the future.

This is what the successor source BESSY III could look like in the future. © Rendering: HZB

At the end of February 2024, a team at HZB published an article in Synchrotron Radiation News (SRN). They describe the next development goals for the light source as well as the BESSY II+ upgrade programme and the successor source BESSY III.

In autumn 2023, HZB celebrated 25 years of research at the BESSY II light source in Berlin-Adlershof. To continue offering scientists from all over the world the best research opportunities in the coming decades, it is important to have a vision for BESSY II. In addition, many light sources around the world are currently being modernised or even newly built to keep up with the latest research questions and contribute with state-of-the art research infrastructures.

The article "Material Discovery at BESSY" shows the relevance of BESSY light source for the research questions of the future. The HZB team describes the goals of the BESSY II+ upgrade programme. Among other things, the programme aims to expand operando techniques that are of great benefit in developing materials for the energy transition.
BESSY II+ is a bridge between BESSY II and the successor source BESSY III, which is scheduled to go into operation in the mid-2030s. It is set to become the "materials discovery machine": a combination of the extremely bright, soft 4th generation light source, the integrated research campus in Berlin-Adlershof and the quantitative measurement capabilities of the national metrology institute (PTB, Physikalisch-Technische Bundesanstalt)
from synchrotron research.

The article has been published in open access and can be read in the journal SRN, which specialises in synchrotron research.

DOI: https://doi.org/10.1080/08940886.2024.2312051


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.