ERC Consolidator Grant for HZB researcher Robert Seidel

Dr. Robert Seidel was awarded an ERC Consolidator Grant for his research project WATER X.

Dr. Robert Seidel was awarded an ERC Consolidator Grant for his research project WATER X. © HZB / Kevin Fuchs

The WATER-X research project is funded by the EU under the project number 101126299.

The WATER-X research project is funded by the EU under the project number 101126299.

Physicist Dr Robert Seidel has been awarded a Consolidator Grant by the European Research Council (ERC). Over the next five years, he will receive a total of two million euros for his research project WATER-X. Seidel will use state-of-the-art X-ray techniques at BESSY II to study nanoparticles in aqueous solution for the photocatalytic production of "green" hydrogen.

With the Consolidator Grant, the ERC supports researchers with several years of experience who are now planning a large-scale research project. The physicist Robert Seidel is an expert in X-ray methods at BESSY II. In high-profile published studies, he has already shown that water still holds many surprises.

In his ERC project WATER-X, he is focusing on the process of photocatalysis, in which water molecules are split into hydrogen and oxygen. If the energy required for the catalysis comes from renewable sources, the hydrogen produced is considered "green". Hydrogen will play an important role in the fossil-free energy system of the future, whether as energy storage, fuel or raw material for industry. However, catalysts are needed for a highly efficient process, and this is where the WATER-X project comes in.

"In WATER-X, we will investigate the ultrafast processes on catalytically active nanoparticles in water that can be activated by light," says Seidel. While the entire photocatalytic water splitting process is relatively slow (milliseconds to seconds), the light-induced processes on the catalyst particles are so fast (picoseconds to nanoseconds) that they have been very difficult to study experimentally. The team will focus on four different transition metal oxides that can be activated by light (photons) and are considered interesting candidates for inexpensive and efficient catalysts.

 Seidel will investigate these picosecond processes at the interfaces of transition metal oxide nanoparticles in water by combining the "liquid microjet setup" at BESSY II with time-resolved femtosecond laser photoelectron spectroscopy. For the first time, short-lived molecular intermediates and their decay mechanisms could be precisely observed experimentally.

"At the end of the WATER-X project, we will understand the light-induced processes between catalyst nanoparticles and water much better and also, how to improve them," says Seidel. This could significantly accelerate the development of novel, highly efficient catalysts for many purposes, not just green hydrogen.

The WATER-X research project is funded by the EU under the project number 101126299.

WATER-X: PHOTO-INDUCED ELECTRON DYNAMICS AT THE TRANSITION-METAL OXIDE–WATER INTERFACE FROM TIME RESOLVED LIQUID-JET PHOTOEMISSION

arö


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.