Green hydrogen: Perovskite oxide catalysts analysed in an X-ray beam

Schematische Ansicht der transformierten Schicht (hellgrau) auf dem LaNiO<sub>3</sub> Perowskitfilm (gr&uuml;n), aufgewachsen auf einem Substrat (braun). Rechts ist die vergr&ouml;&szlig;erte Seitenansicht der transformierten Oxyhydroxid-Schicht (mit Spindichte an den Ni-Pl&auml;tzen) aus Simulationen dargestellt.

Schematische Ansicht der transformierten Schicht (hellgrau) auf dem LaNiO3 Perowskitfilm (grün), aufgewachsen auf einem Substrat (braun). Rechts ist die vergrößerte Seitenansicht der transformierten Oxyhydroxid-Schicht (mit Spindichte an den Ni-Plätzen) aus Simulationen dargestellt. © UDE/AG Pentcheva

The production of green hydrogen requires catalysts that control the process of splitting water into oxygen and hydrogen. However, the structure of the catalyst changes under electrical tension, which also influences the catalytic activity. A team from the universities of Duisburg-Essen and Twente has investigated at BESSY II and elsewhere how the transformation of surfaces in perovskite oxide catalysts controls the activity of the oxygen evolution reaction. 

In a climate-neutral energy system of the future, the sun and wind will be the main sources of electricity. Some of the "green" electricity can be used for the electrolytic splitting of water to produce "green" hydrogen. Hydrogen is an efficient energy storage medium and a valuable raw material for industry. Catalysts are used in electrolysis to accelerate the desired reaction and make the process more efficient. Different catalysts are used for hydrogen separation than for oxygen evolution, but both are necessary.

Perovskite oxide catalysts: inexpensive and with great potential

An interdisciplinary and international group of scientists from the University of Essen-Duisburg, the University of Twente, Forschungszentrum Jülich and HZB has now investigated the class of perovskite oxide catalysts for the oxygen evolution reaction in detail. Perovskite oxide catalysts have been significantly further developed in recent years, they are inexpensive and have the potential for further increases in catalytic efficiency. However, within a short time, changes appear on the surfaces of these materials which reduce the catalytic effect.

Spectroscopy at BESSY II

For this reason, the group has now analysed the surface structure in particular and compared the experimental data with density functional calculations. And spectroscopic analyses at the X-ray source BESSY II were performed. "We were able to determine that a certain surface facet is significantly more active and at the same time more stable than others. X-ray analyses allow us to understand how to overcome the traditional trade-off between activity and stability," says HZB scientist Dr Marcel Risch. The results also show how certain surface facets transform and where, for example, hydrogen atoms (or protons) accumulate.

These insights into transformation processes and structural transformations and chemical processes on the different facets of the samples studied are valuable: they contribute to the knowledge-based design of materials as electrocatalysts. After all, electrocatalysts are the key to many applications in green chemistry.

 

arö


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.