Structure formation during freeze casting filmed

Das 3D-Tomogramm zeigt einen Querschnitt durch die erstarrte Probe, in der sich zwei Phasen voneinander getrennt haben: die Eiskristallphase in blau und die Zuckerphase in rot. Die lamellare Struktur wurde von den Eiskristallen geformt.

Das 3D-Tomogramm zeigt einen Querschnitt durch die erstarrte Probe, in der sich zwei Phasen voneinander getrennt haben: die Eiskristallphase in blau und die Zuckerphase in rot. Die lamellare Struktur wurde von den Eiskristallen geformt.

Freeze casting processes can be used to produce highly porous and hierarchically structured materials that have a large surface area. They are suitable for a wide variety of applications, as electrodes for batteries, catalyst materials or in biomedicine. A team led by Prof. Ulrike G. K. Wegst, Northeastern University, Boston, MA, USA and Dr. Francisco García Moreno from the Helmholtz-Zentrum Berlin have used the newly developed X-ray tomoscopy technique. At the Swiss Light Source of the Paul Scherrer Institute they observed in real time and at high resolution how the process of structure formation takes place during freezing. A sugar solution served as the model system.

Freeze-casting requires several steps. First, substances are dissolved or suspended in a solvent and then frozen in a mold with a cooling rate applied to the bottom (directional solidification). After freezing, the solid solvent phase is removed by sublimation. What remains are the previously dissolved solute molecules and suspended particles. They form the cell walls of the resulting complex, highly porous architecture.

Freeze cast materials can be used for many applications

Freeze-cast materials can be used for many applications. For instance, due to their enormous internal surface areas as battery electrodes or catalysts or because of their aligned porosity in biomedical applications for example as scaffolds for peripheral nerve repair. However, exactly how the ice templates the complex architecture during freezing, and how the desired honeycomb-like aligned porosity and the cell walls with their various surface features are formed, has remained little understood until now.

Dr Francisco García Moreno and his team at Helmholtz-Zentrum Berlin have developed a method to observe these highly dynamic processes in detail. “Using X-ray tomoscopy, we can image the formation of structures in situ with high spatial and temporal resolution and even observe transient phenomena and transitional structures,” explains the physicist. Using an ultrafast turntable, intense X-rays, an extremely fast detector and software for rapid analysis of the X-ray data, the HZB team, together with colleagues at the Swiss Light Source of the Paul Scherrer Institute, studied freeze casting on a model system and demonstrated the high performance of the method. “For this study, we developed a new measuring cell with sensors to precisely record the temperature gradient,” says Dr Paul Kamm (HZB), lead author of the study. A 3D tomogram with a spatial resolution of 6 µm per second was generated. The entire freezing process was documented over 270 seconds.

Freeze casting: high performance of the method proven

Prof. Ulrike G. K. Wegst from Northeastern University, USA, had suggested an aqueous sugar solution as a polymeric model system, since this system can be simulated computationally, and because aqueous solutions still dominate the freeze casting process. “We are now able to experimentally observe for the first time the dynamics of directional ice crystal grow from the liquid phase,” says Wegst. “In doing so, the images document how instabilities form during crystal growth, how these shape the sugar phase and how characteristic, organic-looking structures are formed on the cell walls that are reminiscent of jellyfish and tentacles.” It is also interesting to note that some of these structures may disappear again.

arö


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.