Röntgentomoskopie: Wie sich beim Gefrierguss komplexe Strukturen bilden

Das 3D-Tomogramm zeigt einen Querschnitt durch die erstarrte Probe, in der sich zwei Phasen voneinander getrennt haben: die Eiskristallphase in blau und die Zuckerphase in rot. Die lamellare Struktur wurde von den Eiskristallen geformt.

Das 3D-Tomogramm zeigt einen Querschnitt durch die erstarrte Probe, in der sich zwei Phasen voneinander getrennt haben: die Eiskristallphase in blau und die Zuckerphase in rot. Die lamellare Struktur wurde von den Eiskristallen geformt.

Mit Gefriergussverfahren lassen sich hochporöse und hierarchisch strukturierte Materialien herstellen, die eine große Oberfläche aufweisen. Sie eignen sich für unterschiedlichste Anwendungen, als Elektroden für Batterien, Katalysatormaterialien oder in der Biomedizin. Nun hat ein Team um Prof. Ulrike G. K. Wegst, Northeastern University, Boston, MA, USA, und Dr. Francisco García Moreno vom Helmholtz-Zentrum Berlin an der Swiss Light Source des Paul-Scherrer-Instituts mit dem neu entwickelten Verfahren der Röntgentomoskopie erstmals in Echtzeit und hoher Auflösung beobachtet, wie der Prozess der Strukturbildung beim Gefriergussverfahren abläuft. Als Modellsystem diente eine Zuckerlösung.

Gefriergussverfahren benötigen mehrere Schritte: Zunächst wird eine Substanz in einem Lösungsmittel gelöst oder aufgeschwemmt und daraufhin in einer Kühlzelle mit einer am Boden angelegten Kühlrate eingefroren (gerichtetes Gefrieren). Nach dem Gefrieren wird das kristallisierte Lösungsmittel durch Sublimation entfernt. Übrig bleiben die vormals gelöste Substanz und aufgeschwemmte Partikel, die die Zellwände einer komplexen, hochporösen Architektur bilden.

Gefriergegossene Werkstoffe lassen sich für viele Einsatzbereiche nutzen

Aufgrund ihrer enormen inneren Oberflächen eignen sie sich als Batterieelektroden oder Katalysatoren. Ihre gerichtete Porenstruktur ermöglicht aber auch biomedizinische Anwendungen, zum Beispiel als Gerüststrukturen zur Regeneration von Nervenbahnen. Wie aber der Prozess der hierarchischen Strukturbildung beim Gefrieren im Detail abläuft, und wie sich die gewünschte wabenartige, gerichtete Porosität und die Zellwände mit ihren Oberflächenstrukturen bilden, blieb bisher im Dunkeln.

Dr. Francisco García Moreno vom Helmholtz-Zentrum Berlin hat zusammen mit seinem Team eine Methode entwickelt, mit der sich diese Prozesse genau beobachten lassen. „Mit der Röntgentomoskopie können wir den Mechanismus der Strukturbildung in situ mit hoher räumlicher und zeitlicher Auflösung abbilden und dabei sogar flüchtige Phänomene und Übergangsstrukturen beobachten“, erklärt der Physiker.

Gefriergießen: hohe Leistungsfähigkeit der Methode bewiesen

Mit einem ultraschnellen Drehtisch, intensiver Röntgenstrahlung sowie einem extrem schnellen Detektor und Software für die rasche Auswertung der Röntgendaten hat das HZB-Team gemeinsam mit Kollegen an der Swiss Light Source des Paul-Scherrer-Instituts das Gefriergießen an einem Modellsystem untersucht und die hohe Leistungsfähigkeit der Methode bewiesen. „Für diese Studie haben wir eine neue Messzelle mit Sensoren entwickelt, um den Temperaturgradienten genau zu erfassen“, sagt Dr. Paul Kamm (HZB), Erstautor der Studie. Pro Sekunde entstand ein 3D-Tomogramm mit einer räumlichen Auflösung von 6 µm. Über 270 Sekunden ließ sich der gesamte Prozess des Gefrierens dokumentieren.

Prof. Ulrike G. K. Wegst von der Northeastern University, USA, hatte vorgeschlagen, als polymeres Modellsystem eine wässrige Zuckerlösung zu untersuchen, weil erstens wässrige Lösungen noch immer im Gefriergussverfahren dominieren, und zweitens sich ihr Verhalten gut rechnerisch simulieren lässt. „Wir konnten nun erstmals experimentell beobachten wie die Eiskristalle aus der Lösung gerichtet wachsen“, sagt Wegst. „Dabei dokumentieren die Aufnahmen, wie sich Instabilitäten beim Kristallwachstum bilden, und wie diese die Zuckerphase formen. Dabei entstehen charakteristische, organisch wirkende Strukturen, die an Quallen und Tentakel erinnern.“ Interessant ist auch, dass einige dieser Strukturen teilweise wieder verschwinden.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Science Highlight
    28.03.2025
    Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?
    Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.
  • Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Science Highlight
    27.03.2025
    Katalyseforschung mit dem Röntgenmikroskop an BESSY II
    Anders als in der Schule gelernt, verändern sich manche Katalysatoren doch während der Reaktion: So zum Beispiel können bestimmte Elektrokatalysatoren ihre Struktur und Zusammensetzung während der Reaktion verändern, wenn ein elektrisches Feld anliegt. An der Berliner Röntgenquelle BESSY II gibt es mit dem Röntgenmikroskop TXM ein weltweit einzigartiges Instrument, um solche Veränderungen im Detail zu untersuchen. Die Ergebnisse helfen bei der Entwicklung von innovativen Katalysatoren für die unterschiedlichsten Anwendungen. Ein Beispiel wurde neulich in Nature Materials publiziert. Dabei ging es um die Synthese von Ammoniak aus Abfallnitraten.
  • BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Science Highlight
    25.03.2025
    BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum
    Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.