Alexander von Humboldt Foundation Grant for Dr. Jie Wei

Dr. Jie Wei strives to further elucidate the nanoscale structure-property relationships at electrocatalytic interfaces for CO<sub>2</sub> and CO conversion.

Dr. Jie Wei strives to further elucidate the nanoscale structure-property relationships at electrocatalytic interfaces for CO2 and CO conversion. © C. Kley / HZB

In April, Dr. Jie Wei started his research work in the Helmholtz Young Investigator Group Nanoscale Operando CO2 Photo-Electrocatalysis at Helmholtz-Zentrum Berlin (HZB) and Fritz Haber Institute (FHI) of the Max Planck Society. Wei received one of the highly competitive Humboldt postdoctoral research fellowships and will pursue his two-year project under the guidance of the academic hosts Dr. Christopher Kley and Prof. Dr. Beatriz Roldan Cuenya.

Jie Wei is a native of China and obtained his PhD in physical chemistry at the University of Science and Technology of China. He spent two years as a postdoc at Tsinghua University (China). His previous works focused on the interface structure and dynamic behavior of catalysts under reaction conditions using (video-rate) electrochemical scanning tunneling microscopy (STM), differential electrochemical mass spectrometry and in situ Raman spectroscopy.

“I applied for a postdoctoral position in this group because of the hosts’ expertise in employing cutting-edge in situ surface-sensitive characterization techniques for advancing fundamental understanding of catalysts under reaction conditions,” says Wei. “Together, HZB and FHI offer a unique range of cutting-edge experimental resources along with a strong theory support for calculation and modeling of solid-liquid interfaces. Having access to such advanced spectroscopic characterization tools, particularly electrochemical atomic force microscopy, is awesome. I strive to further elucidate the nanoscale structure-property relationships at electrocatalytic interfaces for CO2 and CO conversion,” he continues.

From his stay in Berlin, Wei also expects to expand his scientific expertise, moving towards more sundry methodologies and more complex sample systems.

“With Jie’s expertise, we look forward to pushing forward the field of nanoscale electrocatalysis for renewable energy conversion and storage", says Christopher Kley. “A key for our successful research is a very diverse and open environment. I am delighted that Jie will enrich our team with new perspectives and ideas“, Beatriz Roldan Cuenya adds.

HZB and FHI have been collaborating on catalysis research for several years. Together they operate the BMBF funded large-scale Catalysis Laboratory (CatLab).

The Alexander von Humboldt Foundation annually awards various fellowships to outstanding scientists from all over the world in all disciplines. The fellowships are highly prized, and the “Humboltians”-community counts numerous Nobel Prizes.

red.

  • Copy link

You might also be interested in

  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.
  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    News
    26.03.2025
    Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    Samira Jama Aden, Architect Design Research, has joined the ETIP PV - The European Technology & Innovation Platform for Photovoltaics working group “Environmental, Social and Governance (ESG)”.