European pilot line for innovative photovoltaic technology based on tandem solar cells

Production line for solar cells.

Production line for solar cells. © Qcells

PEPPERONI, a four-year Research and Innovation project co-funded under Horizon Europe and jointly coordinated by Helmholtz-Zentrum Berlin and Qcells, will support Europe in reaching its renewable energy target of climate neutrality by 2050. The project will help advance perovskite/silicon tandem photovoltaics (PV) technology’s journey towards market introduction and mass manufacturing.

PEPPERONI‘s goal is to identify and address the barriers to tandem solar technology’s market introduction, and ultimately lay the foundations for new production capacity in Europe. A pilot line enabling this development will be established at Qcells’ European headquarters in Thalheim, Germany. The project began on 1 November 2022, with the long-term vision of enabling European industrial leadership on PV production in the global market.  

Within PEPPERONI, a pilot line for industrial-type tandem cells will be established at the Qcells European headquarters in Thalheim, Germany, and will feature innovative equipment, processes and materials to produce high-efficiency tandem cells and modules The project aims to scale up the active area of perovskite/Si tandems from the 1cm2 of today’s record devices to industry-relevant dimensions. PEPPERONI’s approach promises a fast and cost-competitive route to mass-production of PV modules of high performance and long durability.

Fabian Fertig, Director Global R&D Wafer & Cells at Qcells, said: “Qcells is proud to be part of the PEPPERONI consortium with its world-class technology partners. This research promises to break new ground in the advancement of perovskite-silicon tandem solar cell and module technology. At a time of unprecedented pressures on the current energy system, it is exciting to realise this first and transformative step towards industrial-scale manufacturing of next-generation PV technology in Europe.”

Bernd Stannowski, head of group Industry compatible processes, solar cells and modules at HZB added: “At HZB we have developed the tandem technology to world-record efficiency level on lab scale. We are now looking forward to cooperate in the PEPPERONI consortium with partners from science and industry to jointly scale this new and very promising technology up and transfer it to industry.”

Note: This is just an excerpt. Please read the full press release at Qcells-Website>

About the consortium

PEPPERONI combines European knowledge and expertise from fundamental research to small-scale testing and development of solar cells all the way to high-throughput industrial manufacturing of large solar modules. The PEPPERONI consortium counts 17 partners from 12 countries spanning across Europe. PEPPERONI is co-funded by the EU under Horizon Europe and supported by the Swiss State Secretariat for Education, Research and Innovation (SERI).

Qcells/red.

  • Copy link

You might also be interested in

  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.
  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    News
    26.03.2025
    Samira Aden joins ETIP PV - The European Technology & Innovation Platform for Photovoltaics ESG Working Group
    Samira Jama Aden, Architect Design Research, has joined the ETIP PV - The European Technology & Innovation Platform for Photovoltaics working group “Environmental, Social and Governance (ESG)”.