Fine particles back into the raw material cycle

Within three subprojects, organic, metallic and fines that could be recycled into cement are being investigated.

Within three subprojects, organic, metallic and fines that could be recycled into cement are being investigated. © FINEST

Industrial processes always produce fine-grained residues. These rarely find their way back into the industrial value chain, but are usually disposed of and represent a potential environmental risk. The FINEST project records and investigates various of these fine-grained material flows with the aim of developing new concepts to keep them in the cycle and safely dispose of remaining residues. 
FINEST was successful in the Helmholtz Association's sustainability competition and will now receive 5 million euros in funding. 

The project is coordinated by the Helmholtz Institute Freiberg for Resource Technology (HIF) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and involves teams at the Helmholtz-Zentrum Berlin (HZB), the Karlsruhe Institute of Technology (KIT), the Helmholtz Centre for Environmental Research (UFZ), the TU Bergakademie Freiberg (TUBAF) and the University of Greifswald. 


The HZB is participating in FINEST in a project on the degradation of microplastics. "Together with the UFZ, we want to investigate how microplastic particles can be degraded, for example by bacterial enzymes that we improve on a structure basis. In addition, we also want to work with the HZDR to develop new detection methods for micro- and nanoplastics," says Dr. Gert Weber, who conducts research in the Macromolecular Crystallography Group at the HZB.

Starting in July 2022, the researchers from the six participating institutions will work in the five-year project on ultra-fine materials of anthropogenic origin such as microplastics, mineral additives (additives) or metals, for which there are currently hardly any recycling options. Innovative processes are to be used to increase the currently still very low recycling rates of these fine particulate materials and to deposit the remaining residues harmlessly in order to advance a sustainable circular economy. 

Read the full text of the press release at the website of HZDR

HZDR/HZB


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.