A high-ranking Brazilian delegation visited HZB

On 16 May 2022, HZB received a delegation from the Brazilian Ministry of Research, Technology, and Innovation.

On 16 May 2022, HZB received a delegation from the Brazilian Ministry of Research, Technology, and Innovation.

© K. Fuchs / HZB

© K. Fuchs / HZB

© K. Fuchs / HZB

© K. Fuchs / HZB

© K. Fuchs / HZB

© K. Fuchs / HZB

© K. Fuchs / HZB

© K. Fuchs / HZB

© K. Fuchs / HZB

On 16 May 2022, HZB received a delegation from the Brazilian Ministry of Science, Technology and Innovation (MCTI). Vice-Minister of Science Sergio Freitas de Almeida was visibly impressed by the many research activities being done at HZB to drive the transition to a climate-neutral energy supply in society forward.

The delegation visited HZB in advance of the 9th German–Brazilian Dialogue on Science, taking place from 17 to 20 May 2022 in Berlin. Vice-Minister Sergio Freitas de Almeida was accompanied by State Secretaries José Gontijo (Entrepreneurship and Innovation) and Marcelo Morales (Research and Scientific Training) along with other government representatives.

The delegation toured the X-ray source BESSY II which, of course, is also available to Brazilian researchers. The energy research laboratory EMIL and the new research platform for catalysis research CatLab were also on the tour programme. New catalysts are a key component for producing green hydrogen efficiently and cost-effectively, as well as alternative, sustainable fuels and green raw materials for the chemical industry. The interest of the Brazilian delegation in the development of hydrogen technologies was very high. They were also very interested in cooperation between their light source SIRIUS in Campinas (Sao Paolo) and BESSY II in Berlin.

The discussions with representatives of the Brazilian government inspired all participants to strengthen cooperation in the area of research.

sz

  • Copy link

You might also be interested in

  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.
  • Catalysis research with the X-ray microscope at BESSY II
    Science Highlight
    27.03.2025
    Catalysis research with the X-ray microscope at BESSY II
    Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.
  • BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    Science Highlight
    25.03.2025
    BESSY II: Magnetic ‘microflowers’ enhance magnetic fields locally
    A flower-shaped structure only a few micrometres in size made of a nickel-iron alloy can concentrate and locally enhance magnetic fields. The size of the effect can be controlled by varying the geometry and number of 'petals'. This magnetic metamaterial developed by Dr Anna Palau's group at the Institut de Ciencia de Materials de Barcelona (ICMAB) in collaboration with her partners of the CHIST-ERA MetaMagIC project, has now been studied at BESSY II in collaboration with Dr Sergio Valencia. Such a device can be used to increase the sensitivity of magnetic sensors, to reduce the energy required for creating local magnetic fields, but also, at the PEEM experimental station, to study samples under much higher magnetic fields than currently possible.