Walter-Schottky-Award for Felix Büttner

Dr. Felix Büttner is leading a Helmholtz Young Investigator group at HZB on topological solitons.

Dr. Felix Büttner is leading a Helmholtz Young Investigator group at HZB on topological solitons. © privat

The Walter Schottky Prize honours outstanding work by young physicists in solid-state research. For 2022, the award goes to HZB physicist Dr Felix Büttner for his groundbreaking achievements in the field of magnetic skyrmions.

"His work has contributed significantly to the understanding of the ultrafast generation and properties of these topological states."

This praise on Büttner's work is published on the website of the German Physical Society (DPG), which awards the Walter Schottky Prize.

The DPG further explains: Magnetic skyrmions are spin textures that behave like quasiparticles and have a non-trivial topology. Felix Büttner has made a decisive contribution to the fundamental understanding of the dynamics of skyrmions, taking their topology into account. He has used time-resolved X-ray holography and scattering experiments on X-ray lasers to elucidate the mechanisms of the generation of skyrmions by short laser pulses and to improve the possibilities for the fast and efficient movement of skyrmions by current pulses in ladder structures.

Felix Büttner studied in Göttingen and received his PhD in 2013 for his work at the interface of magnetism (Mathias Kläui, JGU Mainz) and X-ray physics (Stefan Eisebitt, TU Berlin). After a stint in industry at Daimler AG, he worked as a postdoctoral researcher at the Massachusetts Institute of Technology with G.S.D. Beach in 2015-2020. Since 2020, he has been leading an independent research group at the Helmholtz Zentrum Berlin für Materialien und Energie.

The award is expected to be presented in March 2022 during the DPG Spring Meeting in Regensburg.

DPG/red.


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.