20 Years Russian-German Joint Laboratory at BESSY II

To mark its 20th anniversary, the Russian-German Laboratory at the BESSY II storage ring for synchrotron radiation in Berlin is organising an online workshop on 18 and 19 November. Scientists will discuss the future perspectives of Russian-German cooperation as well as innovative projects and new goals of the laboratory.

Since its foundation two decades ago, numerous scientists from Russia and Germany have worked at the Russian-German Joint Laboratory and have since published around 770 publications. The research cooperation is now supported by eight partner organisations - Freie Universität Berlin, Helmholtz-Zentrum Berlin, Technische Universität Dresden and Technische Universität Bergakademie Freiberg. They are joined by St. Petersburg State University, the Ioffe Institute in St. Petersburg and the Kurchatov Institute and Shubnikov Institute of Crystallography in Moscow.

The laboratory receives funding from the Federal Ministry of Education and Research. Messreisen supports the HZB and the German-Russian Centre of Excellence G-RISC, which is funded by the German Academic Exchange Service (DAAD) with funds from the Federal Foreign Office.

The researchers will use the anniversary workshop to discuss current highlights from their research. Expert lectures will deal with the magnetism of two-dimensional crystals, i.e. novel materials that can make the computer hardware of the future more powerful and energy-efficient, as well as new battery materials and the question of why novel materials for solar cells show unexpectedly high efficiency. "What does the future hold for the Russian-German Laboratory?" asks Eckart Rühl, Professor of Physical Chemistry at the Free University of Berlin and coordinator of the research laboratory. New synchrotron radiation sources are already being planned in Germany and Russia, he says. "BESSY II will continue to provide excellent opportunities for the Russian-German Laboratory in the coming decade. And the planned successor source BESSY III will make previously unfeasible experiments possible!" emphasises Prof. Dr. Jan Lüning, scientific director of Helmholtz-Zentrum Berlin.

Program of the Workshop on 18 and 19 November 2021

FU Berlin/red.

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.