Life Time Achievement Award for Roland Müller

Sharing knowledge is a pleasure for Roland Müller. Here he explains to his granddaughter how BESSY II works.

Sharing knowledge is a pleasure for Roland Müller. Here he explains to his granddaughter how BESSY II works. © Privat

Accelerator and control systems expert Roland Müller received the ICALEPCS Lifetime Achievement Award. In the more than thirty years of his career at BESSY, the physicist has advanced many projects on control systems at accelerators and has been particularly committed to the international exchange of knowledge.

At this year’s "International Conference on Accelerator and Large Experimental Physics Control Systems" (ICALEPCS) in Shanghai, Roland Müller (HZB) and Andy Götz (ESRF) were jointly honored for their lifetime achievements. The ICALEPCS Lifetime Achievement Award recognizes individuals who have both made significant contributions to their field of expertise and influenced the international practice of control systems development through vision and leadership. This honor is awarded only irregularly, most recently in 2019, and is therefore a special distinction.  

Over the past thirty years, Roland Müller and Andy Götz have not only led many important projects in the field of control systems to success at their own research facilities, but have also advanced the exchange in the professional community for control and operation of large physics experiments, i.e. telescopes, fusion research facilities, detectors, and especially accelerators. Thus, through great dedication and organizational skills, they have helped to build ICALEPCS into the landmark conference for control systems at large-scale research facilities.  

In his acceptance speech, Müller addressed current demands on research that move him and Andy Götz, in particular the responsibility of science towards society. In consequence acquisition and storage of scientific data must be done according to FAIR principles. Data need to be Findable, Accessible, Interoperable and Repurposable. “Only sharing acquired data allows to look for results, nobody thought about at the moment the experiment was performed. The goal is a truly sustainable exploitation. It will add new scientific values. The rapid progress in fighting the Corona virus gave a glimpse into what can be achieved with a large pool of FAIR data. I am curious to see this evolve.”

Roland Müller has worked at the Berlin electron storage rings BESSY and MLS in the field of control systems since receiving his doctorate in 1988 and has held leading positions in machine operation. He retired in 2019, but continues to contribute his expertise: he is currently working on a digitization concept for BESSY III.

 

arö


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.