VIPERLAB: EU project aims to boost perovskite solar industry in Europe

</p> <p>VIPERLAB is funded under the European Programme for Research and Innovation Horizon 2020 (Grant No 101006715).</p> <p>

VIPERLAB is funded under the European Programme for Research and Innovation Horizon 2020 (Grant No 101006715).

HZB runs state-of-the-art laboratories (here HySPRINT) to advance research on perovskite solar cells.

HZB runs state-of-the-art laboratories (here HySPRINT) to advance research on perovskite solar cells. © P. Dera / HZB

Also the EMIL lab at HZB will host VIPERLAB projects.

Also the EMIL lab at HZB will host VIPERLAB projects. © S. Grunze/HZB

The HZB is coordinating a major European collaborative project to open up new opportunities for the European solar industry. The VIPERLAB project involves 15 renowned research institutions from Europe, as well as Switzerland and Great Britain. It will be funded within the framework of the EU's Horizon 2020 programme for the next three and a half years with a total of 5.5 million euros, from which the HZB will receive just under 840,000 euros. 

Perovskite semiconductors enable extremely cheap and powerful solar cells. Many research results on this class of materials are obtained in European laboratories. For example, working groups at Helmholtz-Zentrum Berlin (HZB) have already achieved several world records with perovskite solar cells. Now the HZB is coordinating a major European collaborative project to open up new opportunities for the European solar industry.

VIPERLAB stands for „Fully connected virtual and physical perovskite photovoltaics Lab“. With VIPERLAB, the participating research institutions want to accelerate the development of perovskite PV technology in Europe and promote technology transfer to industry. To this end, they want to establish a close dialogue with the emerging perovskite industry in Europe, both with the help of new initiatives and with more established players such as the European solar industry association Solar Power Europe.

The participating institutions are among the best in European perovskite research. Within VIPERLAB, they will facilitate access to their laboratories and infrastructures so that research teams from public institutions or industry can work with the optimal equipment and methods. A database on materials and building elements will also be established, incorporating information on long-term performance and environmental and economic impacts. This database will enable evidence-based commercial and policy decisions.

Through close collaboration and tailor-made research services, VIPERLAB aims to give European industry a knowledge edge along the entire value chain.

VIPERLAB is funded under the European Programme for Research and Innovation Horizon 2020 (No 101006715).

arö


You might also be interested in

  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.
  • “Research and development in times of war: not only possible, but crucial!”
    Interview
    18.06.2024
    “Research and development in times of war: not only possible, but crucial!”
    The Ukraine Recovery Conference took place in Berlin on 11 and 12 June. On a side-event representatives from Helmholtz, Fraunhofer and Leibniz discussed how research can contribute to the sustainable reconstruction of Ukraine.
    In this interview, Bernd Rech, scientific director at HZB, talks about the importance of research during the war and projects such as Green Deal Ukraina.

  • MXenes for energy storage: Chemical imaging more than just surface deep
    Science Highlight
    17.06.2024
    MXenes for energy storage: Chemical imaging more than just surface deep
    A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.