Solar hydrogen: Photoanodes made of α-SnWO4 promise high efficiencies

TEM-Image of a &alpha;-SnWO<sub>4 </sub>film (pink) coated with 20 nm NiO<sub>x </sub>(green). At the interface of &alpha;-SnWO<sub>4</sub> and NiO<sub>x</sub> an additional interfacial layer can be observed.

TEM-Image of a α-SnWO4 film (pink) coated with 20 nm NiOx (green). At the interface of α-SnWO4 and NiOx an additional interfacial layer can be observed. © HZB

Photoanodes made of metal oxides are considered to be a viable solution for the production of hydrogen with sunlight. α-SnWO4 has optimal electronic properties for photoelectrochemical water splitting with sunlight, but corrodes easily. Protective layers of nickel oxide prevent corrosion, but reduce the photovoltage and limit the efficiency. Now a team at HZB has investigated at BESSY II what happens at the interface between the photoanode and the protective layer. Combined with theoretical methods, the measurement data reveal the presence of an oxide layer that impairs the efficiency of the photoanode.


Hydrogen is an important factor in a sustainable energy system. The gas stores energy in chemical form and can be used in many ways: as a fuel, a feedstock for other fuels and chemicals or even to generate electricity in fuel cells. One solution to produce hydrogen in a climate-neutral way is the electrochemical splitting of water with the help of sunlight. This requires photoelectrodes that provide a photovoltage and photocurrent when exposed to light and at the same time do not corrode in water. Metal oxide compounds have promising prerequisites for this. For example, solar water splitting devices using bismuth vanadate (BiVO4) photoelectrodes achieve already today ~8 % solar-to-hydrogen efficiency, which is close to the material’s theoretical maximum of 9 %.

Theoretical limit is 20 % in α-SnWO4

To achieve efficiencies beyond 9 %, new materials with a smaller band gap are needed. The metal oxide α-SnWO4 has a band gap of 1.9 eV, which is perfectly suited for photoelectrochemical water splitting. Theoretically, a photoanode made of this material could convert ~20 % of the irradiated sunlight into chemical energy (stored in the form of hydrogen). Unfortunately, the compound degrades very quickly in an aqueous environment.

Protection against corrosion comes with a price

Thin layers of nickel oxide (NiOx) can protect the α-SnWO4 photoanode from corrosion, but were found to also significantly reduce the photovoltage. To understand why this is the case, a team led by Dr. Fatwa Abdi at the HZB Institute for Solar Fuels has analysed the α-SnWO4/NiOx interface in detail at BESSY II.

Interface explored at BESSY II

"We studied samples with different thicknesses of NiOx with hard X-ray photoelectron spectroscopy (HAXPES) at BESSY II and interpreted the measured data with results from calculations and simulations," says Patrick Schnell, the first author of the study and a PhD student in the HI-SCORE International Research School at HZB. "These results indicate that a thin oxide layer forms at the interface, which reduces the photovoltage," explains Abdi.

Outlook: better protection layers

Overall, the study provides new, fundamental insights into the complex nature of interfaces in metal oxide-based photoelectrodes. "These insights are very helpful for the development of low-cost, scalable metal oxide photoelectrodes," says Abdi. α-SnWO4 is particularly promising in this regard. "We are currently working on an alternative deposition process for NiOx on α-SnWO4 that does not lead to the formation of an interfacial oxide layer, which is likely to be SnO2. If this is successful, we expect that the photoelectrochemical performance of α -SnWO4 will increase significantly."

arö

  • Copy link

You might also be interested in

  • Langbeinites show talents as 3D quantum spin liquids
    Science Highlight
    23.08.2024
    Langbeinites show talents as 3D quantum spin liquids
    A 3D quantum spin liquid has been discovered in the vicinity of a member of the langbeinite family. The material's specific crystalline structure and the resulting magnetic interactions induce an unusual behaviour that can be traced back to an island of liquidity. An international team has made this discovery with experiments at the ISIS neutron source and theoretical modelling on a nickel-langbeinite sample.
  • Green hydrogen: ‘Artificial leaf’ becomes better under pressure
    Science Highlight
    31.07.2024
    Green hydrogen: ‘Artificial leaf’ becomes better under pressure
    Hydrogen can be produced via the electrolytic splitting of water. One option here is the use of photoelectrodes that convert sunlight into voltage for electrolysis in so called photoelectrochemical cells (PEC cells). A research team at HZB has now shown that the efficiency of PEC cells can be significantly increased under pressure.
  • Green hydrogen from direct seawater electrolysis- experts warn against hype
    News
    29.07.2024
    Green hydrogen from direct seawater electrolysis- experts warn against hype
    At first glance, the plan sounds compelling: invent and develop future electrolysers capable of producing hydrogen directly from unpurified seawater. But a closer look reveals that such direct seawater electrolysers would require years of high-end research. And what is more: DSE electrolyzers are not even necessary - a simple desalination process is sufficient to prepare seawater for conventional electrolyzers. In a commentary in Joule, international experts compare the costs and benefits of the different approaches and come to a clear recommendation.