University of Kassel and HZB establish Joint Lab for the use of artificial intelligence

View into the experimental hall of the electron accelerator BESSY II at Helmholtz-Zentrum Berlin. Researchers carry out experiments at approximately 50 beamlines. The aim of the cooperation between the University of Kassel and the HZB is to use artificial intelligence to evaluate these data more efficiently.

View into the experimental hall of the electron accelerator BESSY II at Helmholtz-Zentrum Berlin. Researchers carry out experiments at approximately 50 beamlines. The aim of the cooperation between the University of Kassel and the HZB is to use artificial intelligence to evaluate these data more efficiently. © HZB/M. Setzpfand

The University of Kassel and Helmholtz-Zentrum Berlin are setting up a joint laboratory for the use of artificial intelligence, where they will be developing new experimental methods and improving the analysis of data from experiments performed at BESSY II.

Every year, nearly 3000 user groups from around the world visit the electron storage ring BESSY II to study an immense variety of materials using the brilliant X-ray light the ring generates. “In the research of current scientific problems, at BESSY II for example, so much data accumulates that it can barely be analysed using conventional analytical programs. In the Joint Lab, we will be developing and employing methods of artificial intelligence to do this analysis. These methods should even allow us to think up entirely new test scenarios in other scientific and technical areas that have always seemed beyond our analytical capabilities in the past,” says Prof. Dr. Arno Ehresmann, the vice president of the University of Kassel, who is also responsible for research funding.

HZB and the University of Kassel recently signed a joint cooperation agreement to set up the Joint Lab Artificial Intelligence Methods for Experiment Design (AIM-ED). A Joint Lab is a medium- to long-term form of cooperation established between the Helmholtz Association and universities. “We are pleased to be able to combine the expertise in artificial intelligence of the University of Kassel and Helmholtz-Zentrum Berlin in this way, for working on groundbreaking solutions together,” says Prof. Ehresmann.

One institute involved in the Joint Lab is the Kassel Research Center for Information System Design (ITeG). “There will also be several particularly strong research groups from the physics department working on the application of AI methods for the design, analysis or optimisation of experiments, including within a DFG Special Research Area,” Prof. Ehresmann says. The Intelligent Embedded Systems Group will also be involved, under the direction of Prof. Dr. Bernhard Sick, who has long been working intensively in the field of machine learning and artificial intelligence.

There are many synergies arising from the newly founded Joint Lab, emphasises Dr. Gregor Hartmann, a supervising researcher at Helmholtz-Zentrum Berlin. “The experiments at BESSY II generate immense amounts of data, where not only the volume of the data but also the complexity and understanding of their creation are decisive for good analysis.” HZB has great expertise in beamline development, and Prof. Ehresmann’s workgroup is contributing its expertise in detectors from the perspective of a long-term BESSY II user. The broad range of artificial intelligence methods covered by Prof. Bernhard Sick’s team will allow the best possible analysis of data. “I am very much looking forward to the intensive and exciting cooperation in this Joint Lab,” says Hartmann.

(Uni Kassel/sz)


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.