Launch of new catalysis centre in HZB-Adlershof

The new CatLab (blue area) will be built in close proximity to BESSY II and other laboratories.

The new CatLab (blue area) will be built in close proximity to BESSY II and other laboratories. © HZB

The Helmholtz-Zentrum Berlin (HZB) is launching a major new project through an interdisciplinary architectural competition: an innovative laboratory and office building for expanding joint catalysis research between the HZB and the Max Planck Society (MPS). Catlab is to become an international beacon for catalysis research that will advance the development of novel catalyst materials urgently needed for the energy transition.

The starting signal has been given: the Helmholtz-Zentrum Berlin (HZB) is inviting architecture and engineering firms to enter an architectural design competition for an innovative office and laboratory building for conducting advanced research. The building is to meet federal sustainability criteria.

The new building will greatly broaden and enhance R&D activities in the field of catalysis research at all points of the innovation process. Novel catalyst materials are destined to play a central role in the energy transition by helping replace fossil fuels with both hydrogen and synthetic fuels that can be produced using renewable energy.

It is for this reason that the HZB, the Max Planck Institute for Chemical Energy Conversion, and the Fritz Haber Institute of the MPS are launching the long-term CatLab project in Berlin. The project partners intend to advance the development of energy-related catalysts in CatLab at the HZB-Adlershof site. CatLab’s close proximity to HZB’s BESSY II synchrotron source and its supporting laboratories with their diverse analysis and characterisation methods will produce major synergies.

The building will be located at Magnusstraße 10 in Berlin-Adlershof. An essential feature of the building must be modular expandability. Laboratory and office space should be seamlessly integrated with an Innovation Centre and a data science platform. The laboratory and office requirements that are essential for CatLab should be covered by the initial construction phase. Two further building sections are planned that will provide a location for research activities in the field of Data Science, and establish an anchor for further large industrial collaborations with space for everything from initial exploratory experiments to fully mature applications.

arö

  • Copy link

You might also be interested in

  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.