User research at BESSY II: Formation of a 2D meta-stable oxide in reactive environments

Illustration of a Cu<sub>x</sub>O<sub>y</sub> structure formed on a AgCu alloy in oxidizing environments described in this work. (c) ACS Applied Materials &amp; Interfaces.

Illustration of a CuxOy structure formed on a AgCu alloy in oxidizing environments described in this work. (c) ACS Applied Materials & Interfaces. © (2020) ACS Publishing

The chemical behaviour of solid material surfaces is an important physical characteristic for applications of catalysis, chemical sensors, fuel cells and electrodes. A research team from the Max Planck Institute for Chemical Energy Conversion has now described an important phenomenon that can occur when metal alloys are exposed to reactive environments at the synchrotron source BESSY II.

In a recent work published in ACS Applied Materials & Interfaces, a researchers’ team led by Dr. Mark Greiner (Surface Structure Analysis, Department of Heterogeneous Reactions) demonstrates an important phenomenon that can occur when metal alloys face reactive environments. They can form meta-stable 2D oxides on their surfaces. Such oxides exhibit chemical and electronic properties that are different from their bulk counterparts. Due to their meta-stability, their existence is also difficult to predict.

This publication displays the results of a thorough investigation of one such oxide, confirming previous theoretical predictions of its existence, and helps to advance the understanding of the complexity of solid surfaces in reactive environments. The investigations were performed using in-situ photon electron spectroscopy at the ISISS beamline and the UE49-PGM beamline at BESSY II.

This investigation was a collaborative research effort between the Max Planck Institute for Chemical Energy Conversion, the Max-Planck-Institut für Eisenforschung, the Fritz Haber Institute of the Max Planck Society, the Helmholtz Zentrum Berlin and the Italian National Research Council Institute of Materials (CNR-IOM).

(sz/Max-Planck-Institut für chemische Energiekonversion)


You might also be interested in

  • Small powerhouses for very special light
    Science Highlight
    27.06.2024
    Small powerhouses for very special light
    An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.
  • New Method for Absorption Correction to Improve Dental Fillings
    Science Highlight
    24.06.2024
    New Method for Absorption Correction to Improve Dental Fillings
    A research team led by Dr. Ioanna Mantouvalou has developed a method to more accurately depict the elemental distributions in dental materials than previously possible. The used confocal micro-X-ray fluorescence (micro-XRF) analysis provides three-dimensional elemental images that contain distortions. These distortions occur when X-rays pass through materials of different densities and compositions. By utilizing micro-CT data, which provides detailed 3D images of the material structure, and chemical information from X-ray absorption spectroscopy (XAS) experiments conducted in the laboratory (BLiX, TU Berlin) and at the synchrotron light source BESSY II, the researchers have improved the method.
  • Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    News
    19.06.2024
    Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) Inaugurated
    On June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.